How to load data from Flexport to JSON File Destination

Learn how to use Airbyte to synchronize your Flexport data into JSON File Destination within minutes.

Summarize this article with:

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a Flexport connector in Airbyte

Connect to Flexport or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up JSON File Destination for your extracted Flexport data

Select JSON File Destination where you want to import data from your Flexport source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the Flexport to JSON File Destination in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner

Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot

Chase Zieman

Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more

Rupak Patel

Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync Flexport to JSON File Destination Manually

Begin by accessing the Flexport API documentation available on their official website. This documentation will provide you with the necessary endpoints and authentication methods required to extract data from Flexport.

Flexport requires authentication to access its API. Typically, this involves generating an API key or using OAuth. Follow the documentation to generate your API credentials. Securely store your API key or client credentials, as you will need them for making API requests.

Determine which data you need to export from Flexport. Locate the relevant API endpoint(s) in the documentation that provide access to this data. Note the HTTP methods (GET, POST, etc.) and any required parameters or headers.

Using a tool like cURL or a programming language such as Python, construct an HTTP request to the identified endpoint. Ensure you include all necessary headers (such as Authorization) and parameters to successfully retrieve data. Test your request using a tool like Postman to ensure it returns the expected data.

Once you have successfully retrieved data from Flexport, parse the response. The data is typically returned in JSON format, which you can process using built-in JSON libraries available in most programming languages. Extract the specific data fields you need for your local JSON file.

With the parsed data, write it to a local JSON file. Ensure that the file is correctly formatted by using JSON serialization methods provided by your programming language. This will typically involve converting your data structure (e.g., a dictionary in Python) to a JSON string and writing it to a file with a .json extension.

If you require regular updates, automate the data export process using a script. Utilize cron jobs on Unix-based systems or Task Scheduler on Windows to run your script at specified intervals. This will ensure that your local JSON file stays up-to-date with the latest data from Flexport.

By following these steps, you can efficiently move data from Flexport to a local JSON file without relying on third-party connectors or integrations.

How to Sync Flexport to JSON File Destination Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

Flexport is a full-service worldwide carriage forwarder and logistics platform using modern software to fix the user experience in worldwide trade and this platform is your supply chain source of truth. It makes managing global logistics as simple, maleable, and programmable as modern business demands. Flexport is completely full-service global freight forwarder and logistics platform using modern software to fix the user experience in global trade. Flexport is a certified freight forwarder that uses people and software to manage the complexity of international trade.

Flexport's API provides access to a wide range of data related to global logistics and supply chain management. The following are the categories of data that can be accessed through Flexport's API:

1. Shipment data: This includes information about the shipment, such as the origin and destination, carrier, mode of transportation, and estimated time of arrival.  
2. Customs data: This includes information about customs clearance, such as the customs broker, customs clearance status, and any duties or taxes owed.  
3. Inventory data: This includes information about the inventory, such as the quantity, location, and status of goods.
4. Purchase order data: This includes information about purchase orders, such as the supplier, order status, and delivery date.  
5. Financial data: This includes information about invoices, payments, and other financial transactions related to the shipment.  
6. Analytics data: This includes data related to shipment performance, such as transit times, delivery accuracy, and cost analysis.  

Overall, Flexport's API provides a comprehensive set of data that can be used to optimize logistics and supply chain operations.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up Flexport to JSON File as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from Flexport to JSON File and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter