Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by thoroughly reviewing Freshcaller's API documentation to understand the endpoints available for extracting data. Identify the specific data you need to move and the corresponding API endpoints required to retrieve this data. Familiarize yourself with authentication methods, rate limits, and response formats.
Set up a local or cloud-based development environment with necessary tools and libraries for scripting. Install a programming language like Python or Node.js, as these languages have robust libraries for making HTTP requests and interacting with RabbitMQ. Ensure you have access to any dependencies or libraries needed to make API calls and handle data.
Write a script that uses Freshcaller's API to fetch the desired data. Use the HTTP client capabilities in your programming language (such as `requests` in Python or `axios` in Node.js) to authenticate and make GET requests to the required endpoints. Parse the JSON response to extract data fields of interest.
Once the data is retrieved, format it appropriately for RabbitMQ consumption. This may involve transforming the data structure into a message format that RabbitMQ can process, such as JSON. Ensure that each data entry is converted into a message that can be published to a RabbitMQ queue.
Install and configure RabbitMQ on a server accessible from your development environment. Define a queue where the data will be sent. Ensure that RabbitMQ is properly secured with user authentication and that the necessary ports are open for communication.
Use a RabbitMQ client library in your chosen programming language to connect to the RabbitMQ server and publish messages to the specified queue. Ensure that your script handles potential errors, such as network issues or queue availability, and implements retries or logging as necessary.
Set up a cron job or equivalent task scheduler to run your script at desired intervals, ensuring data is moved from Freshcaller to RabbitMQ regularly. Monitor the script’s performance and RabbitMQ’s queues to ensure data integrity and troubleshoot any issues that arise during the data transfer process.
By following these steps, you will be able to move data from Freshcaller to RabbitMQ efficiently, without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Setup a connection to your Freshcaller site in minutes, and select the Freshcaller collections you want to replicate.
Freshcaller's API provides access to a wide range of data related to call center operations. The following are the categories of data that can be accessed through Freshcaller's API:
1. Call data: This includes information about incoming and outgoing calls, call duration, call recordings, and call transcripts.
2. Agent data: This includes information about agents, such as their availability, status, and performance metrics.
3. Queue data: This includes information about call queues, such as the number of calls waiting, the average wait time, and the number of agents available.
4. IVR data: This includes information about Interactive Voice Response (IVR) systems, such as the number of calls handled by the IVR, the number of calls transferred to agents, and the success rate of the IVR.
5. Ticket data: This includes information about tickets created from calls, such as the status of the ticket, the agent assigned to the ticket, and the resolution time.
6. Analytics data: This includes information about call center performance metrics, such as call volume, call abandonment rate, and average handle time.
Overall, Freshcaller's API provides a comprehensive set of data that can be used to monitor and optimize call center operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





