Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin, you need to extract data from Greenhouse using their RESTful API. Greenhouse provides APIs for accessing various data like candidates, applications, and jobs. You'll need to authenticate your requests using an API key, which can be generated from your Greenhouse account. Make GET requests to the appropriate endpoints to retrieve the data you need.
Once you've made the API requests, you'll receive data in JSON format. Parse these JSON responses using a programming language of your choice (such as Python, JavaScript, or Ruby). Ensure that the data is structured properly and extract only the fields you require. This step is crucial for organizing the data before transferring it.
After parsing the data, you may want to transform it into a common data format like CSV or a clean JSON file. This transformation can be done using libraries available in your chosen programming language, such as `pandas` in Python for CSV conversion. Ensure that the data is clean and structured properly to facilitate easier loading into S3.
Before uploading data to Amazon S3, configure the AWS CLI on your local machine or server. Install the AWS CLI and run `aws configure` to input your AWS Access Key, Secret Key, region, and output format. This setup will allow you to interact with your S3 buckets through the command line.
Log in to your AWS Management Console and navigate to S3. Create a new bucket where you will store the data from Greenhouse. Ensure that the bucket's permissions and access policies are set according to your security requirements. Note the bucket name for use in the upload process.
With your data prepared and the AWS CLI configured, use the `aws s3 cp` command to upload your local data files to the S3 bucket. For example, run `aws s3 cp /path/to/your/data.csv s3://your-bucket-name/` to copy a CSV file to your designated S3 bucket. This command will securely transfer your data to S3.
After the upload, verify that the data has been successfully transferred to S3. You can do this by navigating to your S3 bucket in the AWS Management Console and checking for the presence of your files. Additionally, try accessing the files to ensure they are intact and accessible according to your permissions settings.
By following these steps, you can successfully move data from Greenhouse to Amazon S3 without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Greenhouse is a software company that specializes in helping businesses acquire talent. It offers a variety of software tools and services to help businesses throughout all aspects of the hiring process, from applicant tracking systems to recruiting software. With the goal of helping businesses find and hire the ideal candidate, Greenhouse helps employers improve the efficiency and effectiveness of the recruitment and hiring process.
Greenhouse's API provides access to a wide range of data related to the recruitment process. The following are the categories of data that can be accessed through the API:
1. Candidates: Information about candidates who have applied for a job, including their name, contact details, resume, and application status.
2. Jobs: Details about the job openings, including the job title, location, department, and job description.
3. Applications: Information about the applications submitted by candidates, including the date of submission, the source of the application, and the status of the application.
4. Interviews: Details about the interviews scheduled with candidates, including the date, time, location, and interviewer.
5. Offers: Information about the job offers made to candidates, including the salary, benefits, and start date.
6. Users: Details about the users who have access to the Greenhouse account, including their name, email address, and role.
7. Departments: Information about the departments within the organization, including the name, description, and manager.
8. Sources: Details about the sources of the candidates, including job boards, referrals, and social media.
Overall, Greenhouse's API provides a comprehensive set of data that can be used to streamline the recruitment process and make data-driven decisions.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: