

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you want to transfer from Harness. Access the data source within Harness, and use the export functionality to generate a file in a commonly used format like CSV or JSON. Ensure you have the necessary permissions to perform the export.
Once exported, examine the data file and make any necessary modifications to ensure compatibility with Typesense. This might involve cleaning up data, restructuring it to fit the schema requirements of Typesense, or converting data types. Save the cleaned data in a format that Typesense supports, typically JSON.
Set up a Typesense server if you haven't already. This involves downloading the appropriate version of Typesense from the official website and following the installation instructions for your operating system. Ensure that the server is running and accessible.
Before importing data, define a schema in Typesense that matches the structure of your data. This schema will include details about the fields, data types, and any indexing options. Use the Typesense API to create a collection with this schema via HTTP requests.
Develop a script using a programming language like Python to read the prepared data file and import it into Typesense. Utilize Typesense's API to handle the import process. The script should open the data file, iterate over each record, and send an HTTP POST request to Typesense to insert each record into the defined collection.
Run the script to start the import process. Monitor the execution to ensure all data is correctly transferred. Handle any errors that arise, which may require revisiting the data preparation step or adjusting the Typesense schema.
After importing, verify that the data has been correctly transferred to Typesense. Use the Typesense API to retrieve a few records and compare them to the original data to ensure accuracy. Check for data integrity and completeness to confirm the success of the transfer.
By following these steps, you can effectively move data from Harness to Typesense without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The harness is the industry’s first Software Delivery stage to use AI to facilitate your DevOps processes - CI, CD & GitOps, Feature Flags, Cloud Costs, and much more. Our AI takes your distribution pipelines to the next level. You can automate yellow verifications, prioritize what tests to run, condition the impact of changes, automate cloud costs, and much more. Lead your delivery pipelines with familiar developer knowledge-YAML, Git Commits. Remove all unnecessary toil and speed up developer productivity.
Harness's API provides access to a wide range of data related to software delivery and deployment. The following are the categories of data that can be accessed through Harness's API:
1. Applications: Information related to the applications being deployed, including their names, versions, and deployment status.
2. Environments: Details about the environments where the applications are being deployed, such as their names, types, and configurations.
3. Pipelines: Information about the pipelines used for software delivery, including their names, stages, and execution status.
4. Workflows: Details about the workflows used for software deployment, such as their names, steps, and execution status.
5. Artifacts: Information about the artifacts used in the software delivery process, including their names, versions, and locations.
6. Metrics: Data related to the performance of the software delivery process, such as deployment frequency, lead time, and mean time to recovery.
7. Logs: Details about the logs generated during the software delivery process, including their content, timestamps, and severity levels.
8. Notifications: Information about the notifications sent during the software delivery process, such as their types, recipients, and content.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: