Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, familiarize yourself with the Hubplanner API by reviewing their documentation. Understand how to authenticate and retrieve data using their API. Similarly, review RabbitMQ's basic concepts, such as exchanges, queues, and routing keys, to understand how messages are published and consumed.
Set up a development environment on your local machine. Install necessary programming tools such as Python, Node.js, or another language you are comfortable with that supports HTTP requests and RabbitMQ client libraries. Also, ensure RabbitMQ is installed and running on your local machine or a server you can access.
Use the Hubplanner API to authenticate and fetch data. This typically involves making HTTP requests with proper headers and parameters. Write a script that sends a GET request to the Hubplanner API endpoint to retrieve the data you are interested in, such as project schedules or resource allocations.
Once you have the data from Hubplanner, process it into a format suitable for RabbitMQ. This may involve converting the data into JSON or another structured format. Ensure the data is correctly structured to meet the requirements of the RabbitMQ consumers that will process the messages.
Use a RabbitMQ client library in your chosen programming language to establish a connection to your RabbitMQ server. Create or connect to an existing exchange and queue. This involves specifying the exchange type (such as direct, topic, or fanout) and binding it to a queue.
With the connection established, use the client library to publish your formatted data to the RabbitMQ exchange. Set the appropriate routing keys if necessary. Ensure that each piece of data (or message) is sent to the correct queue.
Finally, verify that the data has been successfully transferred by consuming messages from the RabbitMQ queue. Write a simple consumer script to read and log messages from the queue. Implement error handling in your scripts to manage exceptions during data retrieval, processing, or message publishing, ensuring smooth and reliable data transfer.
By following these steps, you can effectively move data from Hubplanner to RabbitMQ without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Hubplanner is a tool to plan, schedule, report and manage your entire team.
Hubplanner's API provides access to a wide range of data related to resource management and project planning. The following are the categories of data that can be accessed through Hubplanner's API:
1. Resource data: This includes information about the resources available for project planning, such as their names, roles, skills, and availability.
2. Project data: This includes information about the projects being planned, such as their names, start and end dates, budgets, and milestones.
3. Task data: This includes information about the tasks that need to be completed for each project, such as their names, descriptions, start and end dates, and assigned resources.
4. Time tracking data: This includes information about the time spent on each task by each resource, as well as the overall time spent on each project.
5. Reporting data: This includes information about the progress of each project, such as the percentage of completion, the budget spent, and the remaining budget.
Overall, Hubplanner's API provides access to a comprehensive set of data that can be used to optimize resource management and project planning.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





