Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from HubSpot. Log in to your HubSpot account, navigate to the specific data segment (such as contacts, deals, etc.), and use the export feature to download the data as a CSV file. Ensure you have the necessary permissions to export data and save the file securely on your local machine.
Open the exported CSV file using a spreadsheet application like Excel or Google Sheets. Review the data for accuracy, consistency, and completeness. Remove any unnecessary columns and rows that you do not wish to import into Typesense. Cleaning the data at this stage will help prevent any errors during the import process.
Convert the cleaned CSV data into a JSON format, as Typesense expects data in JSON format for indexing. Each row in the CSV should be converted into a JSON object. Use a script in a programming language like Python or a tool that can perform this conversion. Ensure each JSON object has key-value pairs that align with the fields you plan to use in Typesense.
If you haven't already, install Typesense on your server. Follow the official Typesense documentation to set it up correctly. You need to configure the server settings, create an API key, and ensure your server is running and accessible.
Before importing data, define the schema for your Typesense collection. The schema specifies the attributes and their data types that you plan to index. This can be done using the Typesense API. Ensure the schema aligns with the JSON data structure you prepared earlier.
Develop a script using a programming language like Python to import the JSON data into Typesense. Utilize the Typesense client library for your language to interact with the Typesense API. The script should read the JSON file and push each object into the appropriate Typesense collection according to the defined schema.
After importing the data, verify that all entries have been successfully added to Typesense. You can do this by running search queries on the Typesense server to ensure the data is correctly indexed and searchable. Additionally, test the search functionality to confirm that it meets your requirements and that the data retrieval is accurate and efficient.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
A platform focused on sales and inbound marketing, Hubspot helps businesses optimize their online marketing strategies for greater visibility to attract more visitors, collect leads, and convert prospects into customers. HubSpot provides a variety of essential services and strategies to move businesses forward, including social media and email marketing, website content management, search engine optimization, blogging, and analytics and reporting. Hubspot is an all-around solution for business teams to grow their customer base through effective marketing.
HubSpot's API provides access to a wide range of data categories, including:
1. Contacts: Information about individual contacts, including their name, email address, phone number, and company.
2. Companies: Information about companies, including their name, industry, and location.
3. Deals: Information about deals, including their stage, amount, and close date.
4. Tickets: Information about customer support tickets, including their status, priority, and owner.
5. Products: Information about products, including their name, price, and description.
6. Analytics: Data on website traffic, email performance, and other marketing metrics.
7. Workflows: Information about automated workflows, including their triggers, actions, and outcomes.
8. Forms: Information about forms, including their fields, submissions, and conversion rates.
9. Social media: Data on social media engagement, including likes, shares, and comments.
10. Integrations: Information about third-party integrations, including their status and configuration.
Overall, HubSpot's API provides access to a wide range of data categories that can be used to improve marketing, sales, and customer support efforts.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: