Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by familiarizing yourself with the Insightly API documentation. Insightly provides a RESTful API that allows you to access and retrieve data from your Insightly account. Review the API endpoints available for the data you need to export, such as contacts, organizations, and projects.
Log into your AWS Management Console and create a new S3 bucket where you will store your exported data. Make sure to configure bucket permissions for secure access. Note the bucket name and region, as you will need these details later when uploading data.
Ensure you have the necessary tools installed on your machine, such as Python or another scripting language, AWS CLI, and any libraries needed to make HTTP requests (e.g., `requests` library for Python). These tools will help you interact with the Insightly API and AWS S3.
Create a script to authenticate and interact with the Insightly API. Use Insightly’s API key for authentication and make HTTP GET requests to the relevant endpoints to fetch the data you need. Parse the JSON responses and store the data in a local file in a structured format (e.g., CSV or JSON).
Before uploading the data to S3, perform any necessary data transformation or cleansing. This may include filtering out unnecessary fields, renaming columns, or converting data types. Ensure the data is in a format suitable for your intended use once stored in S3.
Use the AWS CLI to upload your local files to the S3 bucket. First, configure your AWS CLI with your AWS credentials and default region using `aws configure`. Then, execute the `aws s3 cp` command to copy the files from your local system to the specified S3 bucket.
To make the process repeatable and efficient, automate the entire workflow using a cron job (on Unix-based systems) or Task Scheduler (on Windows). Schedule the script to run at desired intervals, ensuring your Insightly data is routinely fetched and updated in S3 without manual intervention.
By following these steps, you can efficiently export data from Insightly to Amazon S3 without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Insightly is a cloud-based customer relationship management (CRM) software that helps businesses manage their sales, marketing, and customer service activities. It provides a centralized platform for managing customer interactions, tracking leads and opportunities, and automating workflows. Insightly also offers project management tools, allowing teams to collaborate on tasks and projects, and track progress in real-time. The software integrates with popular business applications such as Google Apps, Office 365, and Mailchimp, making it easy to streamline workflows and improve productivity. With Insightly, businesses can gain valuable insights into their customers and improve their overall customer experience.
Insightly's API provides access to a wide range of data related to customer relationship management (CRM) and project management. The following are the categories of data that can be accessed through Insightly's API:
1. Contacts: This includes information about individuals or organizations that are associated with a company, such as their name, email address, phone number, and job title.
2. Organizations: This includes information about companies or other types of organizations, such as their name, address, and industry.
3. Opportunities: This includes information about potential sales opportunities, such as the name of the opportunity, the expected revenue, and the stage of the sales process.
4. Projects: This includes information about ongoing projects, such as the project name, description, and status.
5. Tasks: This includes information about tasks that need to be completed as part of a project, such as the task name, due date, and status.
6. Events: This includes information about events that are scheduled, such as the event name, date, and location.
7. Notes: This includes information about notes that have been added to a contact, organization, opportunity, project, or task.
8. Emails: This includes information about emails that have been sent or received by a contact or organization.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





