

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before moving data, determine the types of data you need to transfer, the frequency of transfers, and the data format. This step ensures that you understand your data structure and helps in defining the schema for the data lake.
Log into your AWS Management Console and set up the necessary environment. This includes creating an Amazon S3 bucket where your data will be stored, and configuring AWS Identity and Access Management (IAM) roles and policies to define who can access the data and resources.
Extract the data from your intruder system and format it for compatibility with Amazon S3. This may involve converting the data into a suitable format like CSV, JSON, or Parquet. Ensure your data is clean and structured according to the requirements you identified earlier.
Utilize AWS encryption mechanisms to secure your data during transfer. AWS supports secure transfer protocols like HTTPS and SFTP. Make sure your data is encrypted both in transit and at rest to maintain security and compliance standards.
Use AWS CLI (Command Line Interface) or AWS SDKs (Software Development Kits) to manually upload the data to your Amazon S3 bucket. Execute commands to copy your formatted data files from your local system to the S3 bucket. For example, using AWS CLI, the command might look like `aws s3 cp /local/data/file s3://your-bucket-name/`.
After transferring your data to Amazon S3, verify that the data has been uploaded correctly. You can use AWS S3 console to check the files in the bucket or use AWS CLI commands to list the contents of your bucket and ensure the files are as expected.
To ensure continuous and efficient data movement, set up scripts or cron jobs that automate the extraction and upload process based on your transfer schedule. Use AWS Lambda or AWS Batch for more sophisticated automation needs if necessary, ensuring that you adhere to the ‘no third-party integrations’ constraint.
By following these steps, you can effectively move data from your intruder system to an AWS Data Lake, ensuring that it is done securely and efficiently without relying on external tools or services.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The intruder is an online vulnerability scanner that finds cyber security weaknesses in your digital infrastructure, to avoid costly data breaches. The intruder was founded in 2015 to help solve the information overload crisis in vulnerability management. Having worked both as an ethical hacker for tier one companies, and for blue teams defending critical national infrastructure, That while vulnerability management tools were great at finding issues, they were less useful when it came to prioritizing them, tracking them, and timely alerting when problems arose.
Intruder's API provides access to a wide range of data related to security testing and vulnerability management. The following are the categories of data that can be accessed through Intruder's API:
1. Vulnerability data: This includes information about the vulnerabilities detected during the security testing process, such as the severity level, description, and recommended remediation steps.
2. Scan data: This includes information about the scans performed, such as the start and end time, scan type, and scan results.
3. Asset data: This includes information about the assets being scanned, such as the IP address, hostname, and operating system.
4. User data: This includes information about the users who have access to the Intruder platform, such as their email address, name, and role.
5. Report data: This includes information about the reports generated by the Intruder platform, such as the report type, format, and content.
6. Integration data: This includes information about the integrations with other tools and platforms, such as the API keys, webhook URLs, and authentication credentials.
Overall, Intruder's API provides a comprehensive set of data that can be used to improve security testing and vulnerability management processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





