Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
Sync with Airbyte
1. First, navigate to the Airbyte dashboard and click on "Sources" in the left-hand menu.
2. Click on the "Create New Source" button and select "Iterable" from the list of available connectors.
3. Enter a name for your Iterable source and click "Next".
4. Enter your Iterable API key in the "API Key" field. You can find your API key in your Iterable account under "API Keys" in the "Integrations" tab.
5. Select the data you want to sync from Iterable by checking the boxes next to the relevant objects (e.g. users, campaigns, events).
6. Choose how often you want your data to sync by selecting a sync frequency from the dropdown menu.
7. Click "Test" to ensure that your credentials are correct and that Airbyte can connect to your Iterable account.
8. If the test is successful, click "Create Source" to save your Iterable source and start syncing your data.
9. You can monitor the progress of your sync in the Airbyte dashboard under "Jobs".
1. Log in to your AWS account and navigate to the AWS Management Console.
2. Click on the S3 service and create a new bucket where you will store your data.
3. Create an IAM user with the necessary permissions to access the S3 bucket. Make sure to save the access key and secret key.
4. Open Airbyte and navigate to the Destinations tab.
5. Select the AWS Datalake destination connector and click on "Create new connection".
6. Enter a name for your connection and paste the access key and secret key you saved earlier.
7. Enter the name of the S3 bucket you created in step 2 and select the region where it is located.
8. Choose the format in which you want your data to be stored in the S3 bucket (e.g. CSV, JSON, Parquet).
9. Configure any additional settings, such as compression or encryption, if necessary.
10. Test the connection to make sure it is working properly.
11. Save the connection and start syncing your data to the AWS Datalake.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Iterable is a marketing platform designed to help businesses grow. Its automated platform enables businesses to measure and optimize customer interactions, with the ability to easily create and execute cross-channel campaigns. Through in-app notifications, email, SMS, web and mobile push, and social media integrations, Iterable powers the entire customer engagement lifecycle, throughout all stages of the customer journey.
Iterable's API provides access to a wide range of data related to customer engagement and marketing campaigns. The following are the categories of data that can be accessed through Iterable's API:
1. User data: This includes information about individual users such as their email address, name, location, and other demographic information.
2. Campaign data: This includes information about marketing campaigns such as email campaigns, push notifications, and SMS campaigns. It includes data on the number of messages sent, open rates, click-through rates, and conversion rates.
3. Event data: This includes data on user behavior such as website visits, product purchases, and other actions taken by users.
4. List data: This includes information about the lists of users that have been created in Iterable, including the number of users in each list and their engagement history.
5. Template data: This includes information about the email templates and other marketing materials used in campaigns, including their design, content, and performance metrics.
6. Analytics data: This includes data on the performance of marketing campaigns, including metrics such as revenue generated, customer lifetime value, and return on investment.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
Iterable is a marketing platform designed to help businesses grow. Its automated platform enables businesses to measure and optimize customer interactions, with the ability to easily create and execute cross-channel campaigns. Through in-app notifications, email, SMS, web and mobile push, and social media integrations, Iterable powers the entire customer engagement lifecycle, throughout all stages of the customer journey.
An AWS Data Lake is a centralized repository that allows you to store all your structured and unstructured data at any scale. It is designed to handle massive amounts of data from various sources, such as databases, applications, IoT devices, and more. With AWS Data Lake, you can easily ingest, store, catalog, process, and analyze data using a wide range of AWS services like Amazon S3, Amazon Athena, AWS Glue, and Amazon EMR. This allows you to build data lakes for machine learning, big data analytics, and data warehousing workloads. AWS Data Lake provides a secure, scalable, and cost-effective solution for managing your organization's data.
1. First, navigate to the Airbyte dashboard and click on "Sources" in the left-hand menu.
2. Click on the "Create New Source" button and select "Iterable" from the list of available connectors.
3. Enter a name for your Iterable source and click "Next".
4. Enter your Iterable API key in the "API Key" field. You can find your API key in your Iterable account under "API Keys" in the "Integrations" tab.
5. Select the data you want to sync from Iterable by checking the boxes next to the relevant objects (e.g. users, campaigns, events).
6. Choose how often you want your data to sync by selecting a sync frequency from the dropdown menu.
7. Click "Test" to ensure that your credentials are correct and that Airbyte can connect to your Iterable account.
8. If the test is successful, click "Create Source" to save your Iterable source and start syncing your data.
9. You can monitor the progress of your sync in the Airbyte dashboard under "Jobs".
1. Log in to your AWS account and navigate to the AWS Management Console.
2. Click on the S3 service and create a new bucket where you will store your data.
3. Create an IAM user with the necessary permissions to access the S3 bucket. Make sure to save the access key and secret key.
4. Open Airbyte and navigate to the Destinations tab.
5. Select the AWS Datalake destination connector and click on "Create new connection".
6. Enter a name for your connection and paste the access key and secret key you saved earlier.
7. Enter the name of the S3 bucket you created in step 2 and select the region where it is located.
8. Choose the format in which you want your data to be stored in the S3 bucket (e.g. CSV, JSON, Parquet).
9. Configure any additional settings, such as compression or encryption, if necessary.
10. Test the connection to make sure it is working properly.
11. Save the connection and start syncing your data to the AWS Datalake.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
Iterable's API provides access to a wide range of data related to customer engagement and marketing campaigns. The following are the categories of data that can be accessed through Iterable's API:
1. User data: This includes information about individual users such as their email address, name, location, and other demographic information.
2. Campaign data: This includes information about marketing campaigns such as email campaigns, push notifications, and SMS campaigns. It includes data on the number of messages sent, open rates, click-through rates, and conversion rates.
3. Event data: This includes data on user behavior such as website visits, product purchases, and other actions taken by users.
4. List data: This includes information about the lists of users that have been created in Iterable, including the number of users in each list and their engagement history.
5. Template data: This includes information about the email templates and other marketing materials used in campaigns, including their design, content, and performance metrics.
6. Analytics data: This includes data on the performance of marketing campaigns, including metrics such as revenue generated, customer lifetime value, and return on investment.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: