

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your AWS Management Console. Navigate to the S3 service and create a new bucket. Choose a unique name for your bucket and select the appropriate AWS region. Ensure that you configure the bucket settings to meet your security and compliance requirements, such as enabling versioning if necessary.
Install Boto3, the AWS SDK for Python, which will allow you to interact with AWS services programmatically. Run the command `pip install boto3` in your terminal or command prompt to install the library. Boto3 provides a Pythonic interface to AWS services, including S3.
Set up your AWS credentials to allow Boto3 to authenticate your requests to AWS. You can do this by creating an AWS credentials file in the `~/.aws/` directory on your system. Add your AWS Access Key ID and Secret Access Key to the `credentials` file, and specify the default region in the `config` file. Alternatively, you can set these as environment variables.
Convert your data into a format that can be easily uploaded to S3. If your data is in an iterable format (such as a list or generator), process it into strings or bytes. For example, if your data is a list of dictionaries, consider converting each dictionary to a JSON string. This step ensures that your data can be uploaded as an object to S3.
Write a Python script using Boto3 to upload your prepared data to the S3 bucket. Use the `boto3.client` or `boto3.resource` to interact with S3. Within your script, iterate over your data and use the `upload_fileobj` or `put_object` method to upload each item. Specify the bucket name and the object key (filename) for each upload.
Implement error handling in your script to manage potential issues during data transfer. Use try-except blocks to catch exceptions such as `NoCredentialsError` or `ClientError`. Log any errors or successful uploads for debugging and auditing purposes. This step ensures robustness and traceability in your data transfer process.
After uploading your data to S3, verify that the data has been transferred correctly. You can do this by listing the objects in your S3 bucket using Boto3 and checking that the expected files are present. Additionally, consider using checksums or hashes to validate the integrity of the uploaded data, ensuring that no corruption occurred during upload.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Iterable is a marketing platform designed to help businesses grow. Its automated platform enables businesses to measure and optimize customer interactions, with the ability to easily create and execute cross-channel campaigns. Through in-app notifications, email, SMS, web and mobile push, and social media integrations, Iterable powers the entire customer engagement lifecycle, throughout all stages of the customer journey.
Iterable's API provides access to a wide range of data related to customer engagement and marketing campaigns. The following are the categories of data that can be accessed through Iterable's API:
1. User data: This includes information about individual users such as their email address, name, location, and other demographic information.
2. Campaign data: This includes information about marketing campaigns such as email campaigns, push notifications, and SMS campaigns. It includes data on the number of messages sent, open rates, click-through rates, and conversion rates.
3. Event data: This includes data on user behavior such as website visits, product purchases, and other actions taken by users.
4. List data: This includes information about the lists of users that have been created in Iterable, including the number of users in each list and their engagement history.
5. Template data: This includes information about the email templates and other marketing materials used in campaigns, including their design, content, and performance metrics.
6. Analytics data: This includes data on the performance of marketing campaigns, including metrics such as revenue generated, customer lifetime value, and return on investment.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: