

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before proceeding, it's important to understand the structure of the data in both Jira and Redis. Jira typically stores data in a structured format like JSON, while Redis is a key-value store. Identify what data you need to transfer and how it will be represented in Redis.
Jira provides a REST API that allows you to access its data programmatically. Set up API access by creating an API token from your Jira account. Use this token to authenticate your requests. Ensure your user permissions in Jira allow access to the data you intend to move.
Write a script in a programming language of your choice (such as Python) to extract data from Jira. Use the Jira REST API to fetch the data. For example, you can use Python's `requests` library to send HTTP requests to Jira's API endpoints. Extract the necessary information and parse it into a suitable structure.
Since Redis is a key-value store, you need to transform the extracted data into a format suitable for Redis. Decide on the key schema and how the values will be stored. For example, you might use a combination of project IDs and issue IDs as keys, with the issue details as values.
Use a library compatible with your chosen programming language to connect to your Redis instance. In Python, you can use the `redis-py` library to establish a connection. Ensure you have the correct credentials and network access to connect to your Redis server.
With the connection established, write the transformed data into Redis. Use the appropriate Redis commands to store data according to your schema. For instance, you might use the `SET` command to store simple key-value pairs or `HMSET` for more complex structures like hashes if storing multiple fields per key.
After loading the data, perform checks to ensure data integrity and completeness. Query Redis to verify that all expected keys and values are present and correct. Consider writing automated tests that compare the data in Redis with the original data in Jira to ensure accuracy.
This guide assumes a basic familiarity with programming, HTTP requests, and working with both Jira and Redis. Adjust the steps as necessary to fit the specific requirements and constraints of your environment.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Jira is an issue tracking software by Atlassian that assists developers in bug tracking and agile project management. With software support throughout the entire development process, from planning to tracking, to the final release, and reports based on real-time data to improve team performance, Jira is the go-to software development tool for agile teams.
Jira's API provides access to a wide range of data related to project management and issue tracking. The following are the categories of data that can be accessed through Jira's API:
1. Issues: This includes all the information related to the issues such as issue type, status, priority, description, comments, attachments, and more.
2. Projects: This includes information about the projects such as project name, description, project lead, and more.
3. Users: This includes information about the users such as user name, email address, and more.
4. Workflows: This includes information about the workflows such as workflow name, workflow steps, and more.
5. Custom fields: This includes information about the custom fields such as custom field name, type, and more.
6. Dashboards: This includes information about the dashboards such as dashboard name, description, and more.
7. Reports: This includes information about the reports such as report name, description, and more.
8. Agile boards: This includes information about the agile boards such as board name, board type, and more.
Overall, Jira's API provides access to a vast amount of data that can be used to improve project management and issue tracking.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: