

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by familiarizing yourself with the k6 Cloud API and Google Pub/Sub API. Review their respective documentations to understand the endpoints available for data retrieval and data publishing. This is crucial as you will be making HTTP requests to these APIs directly.
For k6 Cloud, obtain an API token from your k6 account settings. For Google Pub/Sub, set up a service account and download the JSON key file. Ensure that your service account has the necessary permissions to publish messages to Pub/Sub.
Use the k6 Cloud API to retrieve the data you need. This involves making an HTTP GET request to the relevant endpoint using your API token for authentication. You can use tools like `curl` or a script in a language like Python to automate this process.
Once you have the data from the k6 Cloud, parse it into a format suitable for Google Pub/Sub. Typically, Pub/Sub messages are in JSON format, so you may need to convert the data if it’s not already in JSON. Use a programming language like Python or JavaScript to handle this conversion.
Install and configure the Google Cloud SDK on your local machine or server where the script will run. Authenticate with your Google account using the JSON key file. This will allow you to use `gcloud` commands and Python libraries to interact with Google Pub/Sub.
Write a script to publish the formatted data to a specific Pub/Sub topic. Use the Google Cloud Pub/Sub client library in your chosen programming language to create a publisher client, specify the topic, and send the message. Ensure that your topic is already created in your Google Cloud project.
Automate the entire process using a cron job or a similar scheduler to run your script at desired intervals. Test the entire workflow to ensure that data is accurately retrieved from k6 Cloud, formatted correctly, and published to Google Pub/Sub without errors. Monitor logs and handle any exceptions or errors in the script to ensure reliability.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
k6 Cloud is a commercial SaaS product that we designed to be the perfect companion to k6 OSS. It brings ease of use, team management, and continuous testing capabilities to your performance testing projects. k6 Cloud Docs assist you to learn and use k6 Cloud features and functionality. The k6 Cloud is a fully-managed load testing service that complements k6 to accelerate your performance testing. k6 is an open-source load testing tool and cloud service for developers, DevOps, QA, and SRE teams.
K6 Cloud's API provides access to various types of data related to performance testing and monitoring. The following are the categories of data that can be accessed through the API:
1. Test Results: This category includes data related to the results of performance tests, such as response times, error rates, and throughput.
2. Metrics: This category includes data related to various performance metrics, such as CPU usage, memory usage, and network traffic.
3. User Behavior: This category includes data related to user behavior during performance tests, such as the number of users, their actions, and their locations.
4. Environment: This category includes data related to the environment in which the performance tests are conducted, such as the hardware and software configurations.
5. Alerts: This category includes data related to alerts generated during performance tests, such as threshold breaches and error notifications.
6. Reports: This category includes data related to performance test reports, such as summary reports, detailed reports, and trend analysis reports.
Overall, K6 Cloud's API provides a comprehensive set of data that can be used to analyze and optimize the performance of web applications and services.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: