

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin, log in to your k6 Cloud account and navigate to the test results you want to export. Use the k6 API to programmatically fetch the results. You can do this by sending an HTTP GET request to the endpoint that provides access to your test results. Save this data in a structured file format, such as CSV or JSON.
Ensure your Oracle database is properly set up to receive new data. Create a new schema or table that matches the structure of the data you exported from k6. Make sure to define the appropriate data types and constraints to ensure data integrity.
Install the Oracle Instant Client on your machine where you will perform the data transfer. This will allow you to connect to the Oracle database from your local environment. Make sure to set up the necessary environment variables and network configurations, such as the TNS names or Oracle Net Service.
Write a script or program in a programming language of your choice (such as Python) to read and parse the exported data file from k6. Ensure that your script can handle the data format correctly and transform it into a format suitable for insertion into the Oracle database.
Use the Oracle client tools to establish a connection from your script to the Oracle database. Typically, this involves using a database driver compatible with your chosen programming language (e.g., cx_Oracle for Python). Provide necessary credentials and connection strings to ensure a successful connection.
With a successful connection, use SQL INSERT statements in your script to transfer each data entry into the Oracle database table you prepared. Employ transaction management to ensure data integrity and rollback in case of errors. Consider using batch inserts for efficiency if dealing with a large volume of data.
Once the data transfer is complete, perform a sanity check by querying the Oracle database to ensure the data has been accurately inserted. Compare a sample of the data between the original exported file and the database to verify consistency. Address any discrepancies by reviewing the transformation and insertion logic in your script.
By following these steps, you can effectively move data from k6 Cloud to an Oracle database without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
k6 Cloud is a commercial SaaS product that we designed to be the perfect companion to k6 OSS. It brings ease of use, team management, and continuous testing capabilities to your performance testing projects. k6 Cloud Docs assist you to learn and use k6 Cloud features and functionality. The k6 Cloud is a fully-managed load testing service that complements k6 to accelerate your performance testing. k6 is an open-source load testing tool and cloud service for developers, DevOps, QA, and SRE teams.
K6 Cloud's API provides access to various types of data related to performance testing and monitoring. The following are the categories of data that can be accessed through the API:
1. Test Results: This category includes data related to the results of performance tests, such as response times, error rates, and throughput.
2. Metrics: This category includes data related to various performance metrics, such as CPU usage, memory usage, and network traffic.
3. User Behavior: This category includes data related to user behavior during performance tests, such as the number of users, their actions, and their locations.
4. Environment: This category includes data related to the environment in which the performance tests are conducted, such as the hardware and software configurations.
5. Alerts: This category includes data related to alerts generated during performance tests, such as threshold breaches and error notifications.
6. Reports: This category includes data related to performance test reports, such as summary reports, detailed reports, and trend analysis reports.
Overall, K6 Cloud's API provides a comprehensive set of data that can be used to analyze and optimize the performance of web applications and services.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: