

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by clearly identifying the specific data you need from LinkedIn pages. This could include company profiles, posts, employee data, or other relevant information. Make a list of the data fields you need to extract to ensure a focused and efficient data collection process.
Access LinkedIn through your web browser and navigate to the pages from which you want to collect data. You might need to log in to your LinkedIn account to access some of the data. Use your browser's developer tools to inspect the page structure, which will help in identifying where and how the data is displayed.
Write a web scraping script using a programming language like Python with libraries such as BeautifulSoup or Selenium. These libraries allow you to programmatically navigate web pages and extract the data you specified in step 1. Ensure that your scraping script respects LinkedIn's terms of service.
Once you've extracted the data, clean and format it for consistency. This may involve removing HTML tags, handling missing values, and converting data types as necessary. Use data manipulation libraries like Pandas in Python to help organize the data into a structured format such as a CSV file or JSON.
Set up a database schema in Convex that matches the structure of your cleaned LinkedIn data. Define tables and fields according to the data types and relationships you identified. This setup will determine how you will store and query the data once it is imported into Convex.
Use Convex's command line interface or API to upload your cleaned and structured data directly into the database. If you have your data in a CSV file, you may use a script to read the file and insert records into Convex, ensuring that the data types and field names align with your database schema.
After importing the data, perform a thorough verification to ensure that all data has been correctly loaded into Convex. Run queries to check for data completeness, accuracy, and consistency. Address any discrepancies by re-extracting and re-importing the data as needed, and consider setting up a regular verification schedule for ongoing data accuracy.
By following these steps, you can manually move data from LinkedIn pages into Convex without relying on third-party connectors or integrations, ensuring a customized process tailored to your specific data needs.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
LinkedIn Pages are a great platform for organizations to post industry updates, job opportunities, information about life at their organization, and much more. LinkedIn Pages can be used by admins and followers when signed in to LinkedIn.com on desktop and mobile devices. A LinkedIn Page permits you to represent your organization on LinkedIn. LinkedIn Pages offer a platform for companies, universities, and high schools to share information about their brand with visitors and followers. A LinkedIn Page assists.
LinkedIn Pages API provides access to a wide range of data related to LinkedIn Pages. The API allows developers to retrieve and manage data related to company pages, including company information, updates, and followers. Here are the categories of data that LinkedIn Pages API provides access to:
1. Company information: This includes basic information about the company, such as name, logo, description, and website URL.
2. Updates: This includes all the updates posted on the company page, including text, images, and videos.
3. Followers: This includes information about the followers of the company page, such as their names, job titles, and locations.
4. Analytics: This includes data related to the performance of the company page, such as engagement metrics, follower growth, and demographics.
5. Employee information: This includes information about the employees of the company, such as their names, job titles, and LinkedIn profiles.
6. Content recommendations: This includes recommendations for content that is likely to perform well on the company page based on LinkedIn's algorithm.
Overall, LinkedIn Pages API provides developers with a comprehensive set of data that can be used to build powerful applications and tools for managing LinkedIn Pages.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: