

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from Microsoft Teams. If you're dealing with chat messages, you can manually copy the conversations you need into a document or use the Microsoft Compliance Center to export Teams data. For files, download them directly from Teams to your local storage.
Once you have the data, organize it in a structured format. For text data, consider using CSV or JSON formats which are compatible with Typesense. Ensure that each piece of data is properly labeled and categorized for easy indexing later.
Transform the organized data to fit Typesense's requirements. You need to create a collection schema for Typesense. This involves deciding on fields, their data types, and any facets required for your search functionality. Ensure your CSV or JSON matches this schema.
Download and install Typesense on your local machine. Follow the Typesense documentation to set up a server instance. This usually involves extracting the Typesense binary, setting paths, and running it to ensure it’s operational.
With the server running, use the command-line interface or API calls to create a new collection in Typesense. Provide the schema you defined earlier. This step prepares the database to accept the data you will upload.
Use Typesense's API to index your prepared data files into the created collection. This could be done through a script or manually using curl commands. Ensure that the data aligns with the collection schema to avoid any indexing errors.
Finally, verify that the data has been correctly indexed by performing search queries. Use Typesense's search functionality to ensure that all data fields are searchable and return expected results. Make any necessary adjustments to the schema or data format if issues arise.
By following these steps, you can successfully move data from Microsoft Teams to Typesense without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft Teams is a collaborative chat-based workspace designed to enable collaborative teamwork across the Microsoft Office apps (Excel, PowerPoint, OneNote, SharePoint, Word, etc.). Workers can shift between applications within the suite without exiting the platform. Teams can chat through private or standard channels to share insights and ideas on projects in real time. Microsoft Teams streamlines the work process and brings teams together to complete projects more productively.
Microsoft Teams API provides access to a wide range of data that can be used to enhance the functionality of the platform. The following are the categories of data that can be accessed through the API:
1. Teams and Channels: Information about the teams and channels in which the user is a member, including their names, descriptions, and membership details.
2. Messages and Conversations: Access to messages and conversations within a channel, including the content of the messages, the sender and recipient details, and the time and date of the messages.
3. Files and Documents: Access to files and documents shared within a channel, including their names, sizes, and types.
4. Meetings and Calls: Information about scheduled meetings and calls, including the time, date, and participants.
5. Users and Groups: Information about users and groups within the organization, including their names, email addresses, and roles.
6. Apps and Bots: Access to third-party apps and bots integrated with Microsoft Teams, including their names, descriptions, and functionality.
7. Settings and Configuration: Access to the settings and configuration options for Microsoft Teams, including user preferences, notification settings, and security settings.
Overall, the Microsoft Teams API provides a comprehensive set of data that can be used to build custom applications and integrations that enhance the functionality of the platform.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: