How to load data from Microsoft SQL Server (MSSQL) to ElasticSearch

Learn how to use Airbyte to synchronize your Microsoft SQL Server (MSSQL) data into ElasticSearch within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a Microsoft SQL Server (MSSQL) connector in Airbyte

Connect to Microsoft SQL Server (MSSQL) or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up ElasticSearch for your extracted Microsoft SQL Server (MSSQL) data

Select ElasticSearch where you want to import data from your Microsoft SQL Server (MSSQL) source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the Microsoft SQL Server (MSSQL) to ElasticSearch in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Old Automated Content

TL;DR

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps:

  1. set up Microsoft SQL Server (MSSQL) as a source connector (using Auth, or usually an API key)
  2. set up ElasticSearch as a destination connector
  3. define which data you want to transfer and how frequently

You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud.

This tutorial’s purpose is to show you how.

What is Microsoft SQL Server (MSSQL)

Microsoft SQL Server Consultants help companies choose the best business software solutions for their needs. Microsoft SQL Server Consultants help businesses resolve questions and issues, provide businesses with reliable information resources, and, ultimately, make better decisions on the software most appropriate for their unique needs. Consultants are available to help on call and can connect remotely to businesses’ computers to upgrade outdated editions of SQL servers to bring functions up to date for improved productivity.

What is ElasticSearch

Elasticsearch is a powerful search and analytics engine that is designed to handle large amounts of data in real-time. It is an open-source, distributed, and scalable search engine that is built on top of the Apache Lucene search library. Elasticsearch is used to search, analyze, and visualize data in real-time, making it an ideal tool for businesses and organizations that need to process large amounts of data quickly. Elasticsearch is designed to be highly scalable and can be used to index and search data across multiple servers. It is also highly customizable, allowing users to configure it to meet their specific needs. Elasticsearch is commonly used for log analysis, full-text search, and business analytics. One of the key features of Elasticsearch is its ability to handle unstructured data, such as text, images, and videos. It uses a powerful search algorithm to analyze and index this data, making it easy to search and retrieve information quickly. Elasticsearch also supports a wide range of data formats, including JSON, CSV, and XML, making it easy to integrate with other data sources. Overall, Elasticsearch is a powerful tool that can help businesses and organizations to process and analyze large amounts of data quickly and efficiently.

Integrate Microsoft SQL Server (MSSQL) with ElasticSearch in minutes

Try for free now

Prerequisites

  1. A Microsoft SQL Server (MSSQL) account to transfer your customer data automatically from.
  2. A ElasticSearch account.
  3. An active Airbyte Cloud account, or you can also choose to use Airbyte Open Source locally. You can follow the instructions to set up Airbyte on your system using docker-compose.

Airbyte is an open-source data integration platform that consolidates and streamlines the process of extracting and loading data from multiple data sources to data warehouses. It offers pre-built connectors, including Microsoft SQL Server (MSSQL) and ElasticSearch, for seamless data migration.

When using Airbyte to move data from Microsoft SQL Server (MSSQL) to ElasticSearch, it extracts data from Microsoft SQL Server (MSSQL) using the source connector, converts it into a format ElasticSearch can ingest using the provided schema, and then loads it into ElasticSearch via the destination connector. This allows businesses to leverage their Microsoft SQL Server (MSSQL) data for advanced analytics and insights within ElasticSearch, simplifying the ETL process and saving significant time and resources.

Step 1: Set up Microsoft SQL Server (MSSQL) as a source connector

1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.

2. Click on the "Add Source" button and select "MSSQL - SQL Server" from the list of available connectors.

3. Enter a name for the connector and click on the "Next" button.

4. Enter the required credentials for your MSSQL - SQL Server database, including the server name, port number, database name, username, and password.

5. Test the connection to ensure that the credentials are correct and the connection is successful.

6. Select the tables or views that you want to replicate from the MSSQL - SQL Server database.

7. Choose the replication mode that you want to use, either full or incremental.

8. Configure any additional settings, such as the replication frequency and the maximum number of rows to replicate.

9. Click on the "Create Source" button to save the configuration and start the replication process.

10. Monitor the replication process and troubleshoot any issues that may arise using the Airbyte platform's monitoring and logging features.

Step 2: Set up ElasticSearch as a destination connector

1. First, navigate to the Airbyte website and log in to your account.
2. Once you are logged in, click on the "Destinations" tab on the left-hand side of the screen.
3. Scroll down until you find the Elasticsearch destination connector and click on it.
4. You will be prompted to enter your Elasticsearch connection details, including the host URL, port number, and any authentication credentials.
5. Once you have entered your connection details, click on the "Test" button to ensure that your connection is working properly.
6. If the test is successful, click on the "Save" button to save your Elasticsearch destination connector settings.
7. You can now use this connector to send data from your Airbyte sources to your Elasticsearch database.
8. To set up a pipeline, navigate to the "Sources" tab and select the source you want to use.
9. Click on the "Create New Connection" button and select your Elasticsearch destination connector from the list.
10. Follow the prompts to map your source data to your Elasticsearch database fields and save your pipeline.

Step 3: Set up a connection to sync your Microsoft SQL Server (MSSQL) data to ElasticSearch

Once you've successfully connected Microsoft SQL Server (MSSQL) as a data source and ElasticSearch as a destination in Airbyte, you can set up a data pipeline between them with the following steps:

  1. Create a new connection: On the Airbyte dashboard, navigate to the 'Connections' tab and click the '+ New Connection' button.
  2. Choose your source: Select Microsoft SQL Server (MSSQL) from the dropdown list of your configured sources.
  3. Select your destination: Choose ElasticSearch from the dropdown list of your configured destinations.
  4. Configure your sync: Define the frequency of your data syncs based on your business needs. Airbyte allows both manual and automatic scheduling for your data refreshes.
  5. Select the data to sync: Choose the specific Microsoft SQL Server (MSSQL) objects you want to import data from towards ElasticSearch. You can sync all data or select specific tables and fields.
  6. Select the sync mode for your streams: Choose between full refreshes or incremental syncs (with deduplication if you want), and this for all streams or at the stream level. Incremental is only available for streams that have a primary cursor.
  7. Test your connection: Click the 'Test Connection' button to make sure that your setup works. If the connection test is successful, save your configuration.
  8. Start the sync: If the test passes, click 'Set Up Connection'. Airbyte will start moving data from Microsoft SQL Server (MSSQL) to ElasticSearch according to your settings.

Remember, Airbyte keeps your data in sync at the frequency you determine, ensuring your ElasticSearch data warehouse is always up-to-date with your Microsoft SQL Server (MSSQL) data.

Use Cases to transfer your Microsoft SQL Server (MSSQL) data to ElasticSearch

Integrating data from Microsoft SQL Server (MSSQL) to ElasticSearch provides several benefits. Here are a few use cases:

  1. Advanced Analytics: ElasticSearch’s powerful data processing capabilities enable you to perform complex queries and data analysis on your Microsoft SQL Server (MSSQL) data, extracting insights that wouldn't be possible within Microsoft SQL Server (MSSQL) alone.
  2. Data Consolidation: If you're using multiple other sources along with Microsoft SQL Server (MSSQL), syncing to ElasticSearch allows you to centralize your data for a holistic view of your operations, and to set up a change data capture process so you never have any discrepancies in your data again.
  3. Historical Data Analysis: Microsoft SQL Server (MSSQL) has limits on historical data. Syncing data to ElasticSearch allows for long-term data retention and analysis of historical trends over time.
  4. Data Security and Compliance: ElasticSearch provides robust data security features. Syncing Microsoft SQL Server (MSSQL) data to ElasticSearch ensures your data is secured and allows for advanced data governance and compliance management.
  5. Scalability: ElasticSearch can handle large volumes of data without affecting performance, providing an ideal solution for growing businesses with expanding Microsoft SQL Server (MSSQL) data.
  6. Data Science and Machine Learning: By having Microsoft SQL Server (MSSQL) data in ElasticSearch, you can apply machine learning models to your data for predictive analytics, customer segmentation, and more.
  7. Reporting and Visualization: While Microsoft SQL Server (MSSQL) provides reporting tools, data visualization tools like Tableau, PowerBI, Looker (Google Data Studio) can connect to ElasticSearch, providing more advanced business intelligence options. If you have a Microsoft SQL Server (MSSQL) table that needs to be converted to a ElasticSearch table, Airbyte can do that automatically.

Wrapping Up

To summarize, this tutorial has shown you how to:

  1. Configure a Microsoft SQL Server (MSSQL) account as an Airbyte data source connector.
  2. Configure ElasticSearch as a data destination connector.
  3. Create an Airbyte data pipeline that will automatically be moving data directly from Microsoft SQL Server (MSSQL) to ElasticSearch after you set a schedule

With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.

We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that supports both incremental and full refreshes, for databases of any size.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Jean-Mathieu Saponaro
Data & Analytics Senior Eng Manager

"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"

Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Alexis Weill
Data Lead

“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria.
The value of being able to scale and execute at a high level by maximizing resources is immense”

Sync with Airbyte

How to Sync Microsoft SQL Server (MSSQL) to ElasticSearch Manually

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

Microsoft SQL Server Consultants help companies choose the best business software solutions for their needs. Microsoft SQL Server Consultants help businesses resolve questions and issues, provide businesses with reliable information resources, and, ultimately, make better decisions on the software most appropriate for their unique needs. Consultants are available to help on call and can connect remotely to businesses’ computers to upgrade outdated editions of SQL servers to bring functions up to date for improved productivity.

MSSQL - SQL Server provides access to a wide range of data types, including:  

1. Relational data: This includes tables, views, and stored procedures that are used to store and manipulate data in a structured format.  

2. Non-relational data: This includes data that is not stored in a structured format, such as XML documents, JSON objects, and binary data.  

3. Spatial data: This includes data that is related to geographic locations, such as maps, coordinates, and spatial queries.  

4. Time-series data: This includes data that is related to time, such as timestamps, dates, and time intervals.  

5. Graph data: This includes data that is related to relationships between entities, such as social networks, supply chains, and organizational structures.  

6. Machine learning data: This includes data that is used for training and testing machine learning models, such as feature vectors, labels, and performance metrics.  

7. Streaming data: This includes data that is generated in real-time, such as sensor data, log files, and social media feeds.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up MSSQL - SQL Server to Elasticsearch as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from MSSQL - SQL Server to Elasticsearch and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

Databases
Databases

How to load data from Microsoft SQL Server (MSSQL) to ElasticSearch

Learn how to use Airbyte to synchronize your Microsoft SQL Server (MSSQL) data into ElasticSearch within minutes.

TL;DR

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps:

  1. set up Microsoft SQL Server (MSSQL) as a source connector (using Auth, or usually an API key)
  2. set up ElasticSearch as a destination connector
  3. define which data you want to transfer and how frequently

You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud.

This tutorial’s purpose is to show you how.

What is Microsoft SQL Server (MSSQL)

Microsoft SQL Server Consultants help companies choose the best business software solutions for their needs. Microsoft SQL Server Consultants help businesses resolve questions and issues, provide businesses with reliable information resources, and, ultimately, make better decisions on the software most appropriate for their unique needs. Consultants are available to help on call and can connect remotely to businesses’ computers to upgrade outdated editions of SQL servers to bring functions up to date for improved productivity.

What is ElasticSearch

Elasticsearch is a powerful search and analytics engine that is designed to handle large amounts of data in real-time. It is an open-source, distributed, and scalable search engine that is built on top of the Apache Lucene search library. Elasticsearch is used to search, analyze, and visualize data in real-time, making it an ideal tool for businesses and organizations that need to process large amounts of data quickly. Elasticsearch is designed to be highly scalable and can be used to index and search data across multiple servers. It is also highly customizable, allowing users to configure it to meet their specific needs. Elasticsearch is commonly used for log analysis, full-text search, and business analytics. One of the key features of Elasticsearch is its ability to handle unstructured data, such as text, images, and videos. It uses a powerful search algorithm to analyze and index this data, making it easy to search and retrieve information quickly. Elasticsearch also supports a wide range of data formats, including JSON, CSV, and XML, making it easy to integrate with other data sources. Overall, Elasticsearch is a powerful tool that can help businesses and organizations to process and analyze large amounts of data quickly and efficiently.

Integrate Microsoft SQL Server (MSSQL) with ElasticSearch in minutes

Try for free now

Prerequisites

  1. A Microsoft SQL Server (MSSQL) account to transfer your customer data automatically from.
  2. A ElasticSearch account.
  3. An active Airbyte Cloud account, or you can also choose to use Airbyte Open Source locally. You can follow the instructions to set up Airbyte on your system using docker-compose.

Airbyte is an open-source data integration platform that consolidates and streamlines the process of extracting and loading data from multiple data sources to data warehouses. It offers pre-built connectors, including Microsoft SQL Server (MSSQL) and ElasticSearch, for seamless data migration.

When using Airbyte to move data from Microsoft SQL Server (MSSQL) to ElasticSearch, it extracts data from Microsoft SQL Server (MSSQL) using the source connector, converts it into a format ElasticSearch can ingest using the provided schema, and then loads it into ElasticSearch via the destination connector. This allows businesses to leverage their Microsoft SQL Server (MSSQL) data for advanced analytics and insights within ElasticSearch, simplifying the ETL process and saving significant time and resources.

Step 1: Set up Microsoft SQL Server (MSSQL) as a source connector

1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.

2. Click on the "Add Source" button and select "MSSQL - SQL Server" from the list of available connectors.

3. Enter a name for the connector and click on the "Next" button.

4. Enter the required credentials for your MSSQL - SQL Server database, including the server name, port number, database name, username, and password.

5. Test the connection to ensure that the credentials are correct and the connection is successful.

6. Select the tables or views that you want to replicate from the MSSQL - SQL Server database.

7. Choose the replication mode that you want to use, either full or incremental.

8. Configure any additional settings, such as the replication frequency and the maximum number of rows to replicate.

9. Click on the "Create Source" button to save the configuration and start the replication process.

10. Monitor the replication process and troubleshoot any issues that may arise using the Airbyte platform's monitoring and logging features.

Step 2: Set up ElasticSearch as a destination connector

1. First, navigate to the Airbyte website and log in to your account.
2. Once you are logged in, click on the "Destinations" tab on the left-hand side of the screen.
3. Scroll down until you find the Elasticsearch destination connector and click on it.
4. You will be prompted to enter your Elasticsearch connection details, including the host URL, port number, and any authentication credentials.
5. Once you have entered your connection details, click on the "Test" button to ensure that your connection is working properly.
6. If the test is successful, click on the "Save" button to save your Elasticsearch destination connector settings.
7. You can now use this connector to send data from your Airbyte sources to your Elasticsearch database.
8. To set up a pipeline, navigate to the "Sources" tab and select the source you want to use.
9. Click on the "Create New Connection" button and select your Elasticsearch destination connector from the list.
10. Follow the prompts to map your source data to your Elasticsearch database fields and save your pipeline.

Step 3: Set up a connection to sync your Microsoft SQL Server (MSSQL) data to ElasticSearch

Once you've successfully connected Microsoft SQL Server (MSSQL) as a data source and ElasticSearch as a destination in Airbyte, you can set up a data pipeline between them with the following steps:

  1. Create a new connection: On the Airbyte dashboard, navigate to the 'Connections' tab and click the '+ New Connection' button.
  2. Choose your source: Select Microsoft SQL Server (MSSQL) from the dropdown list of your configured sources.
  3. Select your destination: Choose ElasticSearch from the dropdown list of your configured destinations.
  4. Configure your sync: Define the frequency of your data syncs based on your business needs. Airbyte allows both manual and automatic scheduling for your data refreshes.
  5. Select the data to sync: Choose the specific Microsoft SQL Server (MSSQL) objects you want to import data from towards ElasticSearch. You can sync all data or select specific tables and fields.
  6. Select the sync mode for your streams: Choose between full refreshes or incremental syncs (with deduplication if you want), and this for all streams or at the stream level. Incremental is only available for streams that have a primary cursor.
  7. Test your connection: Click the 'Test Connection' button to make sure that your setup works. If the connection test is successful, save your configuration.
  8. Start the sync: If the test passes, click 'Set Up Connection'. Airbyte will start moving data from Microsoft SQL Server (MSSQL) to ElasticSearch according to your settings.

Remember, Airbyte keeps your data in sync at the frequency you determine, ensuring your ElasticSearch data warehouse is always up-to-date with your Microsoft SQL Server (MSSQL) data.

Use Cases to transfer your Microsoft SQL Server (MSSQL) data to ElasticSearch

Integrating data from Microsoft SQL Server (MSSQL) to ElasticSearch provides several benefits. Here are a few use cases:

  1. Advanced Analytics: ElasticSearch’s powerful data processing capabilities enable you to perform complex queries and data analysis on your Microsoft SQL Server (MSSQL) data, extracting insights that wouldn't be possible within Microsoft SQL Server (MSSQL) alone.
  2. Data Consolidation: If you're using multiple other sources along with Microsoft SQL Server (MSSQL), syncing to ElasticSearch allows you to centralize your data for a holistic view of your operations, and to set up a change data capture process so you never have any discrepancies in your data again.
  3. Historical Data Analysis: Microsoft SQL Server (MSSQL) has limits on historical data. Syncing data to ElasticSearch allows for long-term data retention and analysis of historical trends over time.
  4. Data Security and Compliance: ElasticSearch provides robust data security features. Syncing Microsoft SQL Server (MSSQL) data to ElasticSearch ensures your data is secured and allows for advanced data governance and compliance management.
  5. Scalability: ElasticSearch can handle large volumes of data without affecting performance, providing an ideal solution for growing businesses with expanding Microsoft SQL Server (MSSQL) data.
  6. Data Science and Machine Learning: By having Microsoft SQL Server (MSSQL) data in ElasticSearch, you can apply machine learning models to your data for predictive analytics, customer segmentation, and more.
  7. Reporting and Visualization: While Microsoft SQL Server (MSSQL) provides reporting tools, data visualization tools like Tableau, PowerBI, Looker (Google Data Studio) can connect to ElasticSearch, providing more advanced business intelligence options. If you have a Microsoft SQL Server (MSSQL) table that needs to be converted to a ElasticSearch table, Airbyte can do that automatically.

Wrapping Up

To summarize, this tutorial has shown you how to:

  1. Configure a Microsoft SQL Server (MSSQL) account as an Airbyte data source connector.
  2. Configure ElasticSearch as a data destination connector.
  3. Create an Airbyte data pipeline that will automatically be moving data directly from Microsoft SQL Server (MSSQL) to ElasticSearch after you set a schedule

With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.

We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

Data synchronization between SQL Server and Elasticsearch is crucial for organizations seeking to leverage the strengths of both systems. This article explores two methods to achieve this: using Airbyte, a popular open-source data integration platform, and a manual approach utilizing SQL Server exports and Elasticsearch's bulk API.

What is SQL Server?

SQL Server is a relational database management system (RDBMS) developed by Microsoft. It's designed to store and retrieve structured data efficiently, using SQL (Structured Query Language) for data manipulation and querying.

Key features

1. ACID compliance

2. Strong data integrity and consistency

3. Complex join operations and transactions

What is Elasticsearch?

Elasticsearch is a distributed, open-source search and analytics engine built on Apache Lucene. It's designed for full-text search, structured search, and analytics on large volumes of data.

Key features

1. Near real-time search and analytics

2. Distributed and highly scalable

3. Schema-free JSON documents

4. Powerful full-text search capabilities

 {{COMPONENT_CTA}}

Methods to Move Data From Microsoft sql server to elasticsearch

  • Method 1: Connecting Microsoft sql server to elasticsearch using Airbyte.
  • Method 2: Connecting Microsoft sql server to elasticsearch manually.

Method 1: Connecting Microsoft sql server to elasticsearch using Airbyte

Prerequisites

  1. A Microsoft SQL Server (MSSQL) account to transfer your customer data automatically from.
  2. A ElasticSearch account.
  3. An active Airbyte Cloud account, or you can also choose to use Airbyte Open Source locally. You can follow the instructions to set up Airbyte on your system using docker-compose.

Airbyte is an open-source data integration platform that consolidates and streamlines the process of extracting and loading data from multiple data sources to data warehouses. It offers pre-built connectors, including Microsoft SQL Server (MSSQL) and ElasticSearch, for seamless data migration.

When using Airbyte to move data from Microsoft SQL Server (MSSQL) to ElasticSearch, it extracts data from Microsoft SQL Server (MSSQL) using the source connector, converts it into a format ElasticSearch can ingest using the provided schema, and then loads it into ElasticSearch via the destination connector. This allows businesses to leverage their Microsoft SQL Server (MSSQL) data for advanced analytics and insights within ElasticSearch, simplifying the ETL process and saving significant time and resources.

Step 1: Set up Microsoft SQL Server (MSSQL) as a source connector

1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.

2. Click on the "Add Source" button and select "MSSQL - SQL Server" from the list of available connectors.

3. Enter a name for the connector and click on the "Next" button.

4. Enter the required credentials for your MSSQL - SQL Server database, including the server name, port number, database name, username, and password.

5. Test the connection to ensure that the credentials are correct and the connection is successful.

6. Select the tables or views that you want to replicate from the MSSQL - SQL Server database.

7. Choose the replication mode that you want to use, either full or incremental.

8. Configure any additional settings, such as the replication frequency and the maximum number of rows to replicate.

9. Click on the "Create Source" button to save the configuration and start the replication process.

10. Monitor the replication process and troubleshoot any issues that may arise using the Airbyte platform's monitoring and logging features.

Step 2: Set up ElasticSearch as a destination connector

1. First, navigate to the Airbyte website and log in to your account.
2. Once you are logged in, click on the "Destinations" tab on the left-hand side of the screen.
3. Scroll down until you find the Elasticsearch destination connector and click on it.
4. You will be prompted to enter your Elasticsearch connection details, including the host URL, port number, and any authentication credentials.
5. Once you have entered your connection details, click on the "Test" button to ensure that your connection is working properly.
6. If the test is successful, click on the "Save" button to save your Elasticsearch destination connector settings.
7. You can now use this connector to send data from your Airbyte sources to your Elasticsearch database.
8. To set up a pipeline, navigate to the "Sources" tab and select the source you want to use.
9. Click on the "Create New Connection" button and select your Elasticsearch destination connector from the list.
10. Follow the prompts to map your source data to your Elasticsearch database fields and save your pipeline.

Step 3: Set up a connection to sync your Microsoft SQL Server (MSSQL) data to ElasticSearch

Once you've successfully connected Microsoft SQL Server (MSSQL) as a data source and ElasticSearch as a destination in Airbyte, you can set up a data pipeline between them with the following steps:

  1. Create a new connection: On the Airbyte dashboard, navigate to the 'Connections' tab and click the '+ New Connection' button.
  2. Choose your source: Select Microsoft SQL Server (MSSQL) from the dropdown list of your configured sources.
  3. Select your destination: Choose ElasticSearch from the dropdown list of your configured destinations.
  4. Configure your sync: Define the frequency of your data syncs based on your business needs. Airbyte allows both manual and automatic scheduling for your data refreshes.
  5. Select the data to sync: Choose the specific Microsoft SQL Server (MSSQL) objects you want to import data from towards ElasticSearch. You can sync all data or select specific tables and fields.
  6. Select the sync mode for your streams: Choose between full refreshes or incremental syncs (with deduplication if you want), and this for all streams or at the stream level. Incremental is only available for streams that have a primary cursor.
  7. Test your connection: Click the 'Test Connection' button to make sure that your setup works. If the connection test is successful, save your configuration.
  8. Start the sync: If the test passes, click 'Set Up Connection'. Airbyte will start moving data from Microsoft SQL Server (MSSQL) to ElasticSearch according to your settings.

Remember, Airbyte keeps your data in sync at the frequency you determine, ensuring your ElasticSearch data warehouse is always up-to-date with your Microsoft SQL Server (MSSQL) data.

Method 2: Connecting Microsoft sql server to elasticsearch manually

Moving data from Microsoft SQL Server to Elasticsearch without using third-party connectors or integrations involves several steps, including extracting data from SQL Server, transforming it into a format that Elasticsearch can ingest, and then loading it into Elasticsearch. Below is a detailed step-by-step guide to accomplish this task.

Step 1: Set up your Elasticsearch Cluster

Before you begin the data transfer, ensure that you have an Elasticsearch cluster set up and accessible. You could use a local instance for testing or a cloud-based service.

1. Download Elasticsearch from the official website or use a cloud service provider like Elastic Cloud.

2. Follow the installation instructions specific to your platform.

3. Start the Elasticsearch server and ensure it is running by accessing `http://localhost:9200` in a web browser or using a tool like `curl`.

Step 2: Define the Elasticsearch Index and Mapping

You need to create an index in Elasticsearch where the data will be stored. Define the appropriate mappings that correspond to the data types in your SQL Server database.

1. Use the Kibana console or a tool like `curl` to create an index.

2. Define the mappings for the fields based on your SQL data.

Example:

```json

PUT /my_index

{

  "mappings": {

    "properties": {

      "field1": { "type": "text" },

      "field2": { "type": "date" },

      "field3": { "type": "integer" }

      // Add mappings for all fields you plan to transfer

    }

  }

}

```

Step 3: Extract Data from SQL Server

To extract data from SQL Server, you can use a scripting language like Python with a library such as `pyodbc` or `pymssql`.

1. Install the necessary library (e.g., `pip install pyodbc`).

2. Write a script to connect to your SQL Server database.

3. Execute a query to retrieve the data you want to transfer.

4. Fetch the results and store them in a format that can be ingested by Elasticsearch (typically JSON).

Example Python script using `pyodbc`:

```python

import pyodbc

import json

# Connect to SQL Server

conn = pyodbc.connect('DRIVER={SQL Server};SERVER=your_server;DATABASE=your_db;UID=your_user;PWD=your_password')

cursor = conn.cursor()

# Execute a query

cursor.execute('SELECT * FROM YourTable')

# Fetch the results

rows = cursor.fetchall()

# Convert to JSON

data = [dict(zip([column[0] for column in cursor.description], row)) for row in rows]

# Close the connection

cursor.close()

conn.close()

```

Step 4: Load Data into Elasticsearch

Once you have the data in JSON format, you can use Elasticsearch's Bulk API to load the data.

1. Create a new Python script or extend the existing one to send the JSON data to Elasticsearch.

2. Use the `requests` library to make HTTP POST requests to the Elasticsearch Bulk API endpoint.

Example Python script snippet to load data:

```python

import requests

# Elasticsearch URL

es_url = 'http://localhost:9200/my_index/_bulk'

# Prepare bulk payload

bulk_payload = ''

for record in data:

    # Add index operation metadata

    bulk_payload += json.dumps({"index": {"_index": "my_index"}}) + '\n'

    # Add the document data

    bulk_payload += json.dumps(record) + '\n'

# Set the appropriate content type for bulk upload

headers = {'Content-Type': 'application/x-ndjson'}

# Make the POST request

response = requests.post(es_url, data=bulk_payload, headers=headers)

# Check for errors

if response.status_code != 200:

    print("Error:", response.text)

else:

    print("Data loaded successfully")

```

Step 5: Verify Data Integrity

After loading the data into Elasticsearch, verify that the data has been correctly indexed and is queryable.

1. Use Kibana or `curl` to run a few test queries against the Elasticsearch index.

2. Compare the results with the original data in SQL Server to ensure that the data transfer was successful and the data integrity is maintained.

Example query using `curl`:

```shell

curl -X GET "localhost:9200/my_index/_search?pretty" -H 'Content-Type: application/json' -d'

{

  "query": {

    "match_all": {}

  }

}

'

```

Step 6: Automate and Schedule the Data Transfer (Optional)

For recurring data transfers, consider automating the process with a scheduled job or script. This could be done using cron jobs on Linux or Task Scheduler on Windows.

Important Considerations

- Ensure that your Elasticsearch cluster is properly secured, especially if it is accessible over the internet.

- Be mindful of the data volume and Elasticsearch's indexing performance. Large data sets may require batch processing and tuning of Elasticsearch settings.

- Always test the entire process with a subset of data before moving to production.

- Make sure to handle any data transformations that are necessary for Elasticsearch during the data extraction or loading phase.

- Keep in mind that this manual approach does not provide real-time synchronization. If real-time data transfer is required, you may need to implement a more complex solution or consider using a third-party connector.

By following these steps, you should be able to move data from Microsoft SQL Server to Elasticsearch without using third-party connectors or integrations.

Which Method Should You Choose?

Ease of use

Airbyte: Easier to set up and use, with a user-friendly interface for configuring connections.

Manual: Requires more technical knowledge and hands-on management of the export and import processes.

Scalability

Airbyte: Can handle large datasets and offers options for incremental syncs, making it more scalable for growing data volumes.

Manual: May become cumbersome and time-consuming as data volume increases, potentially requiring custom scripts for efficiency.

Customization options

Airbyte: Offers some customization through its UI and configuration options.

Manual: Provides complete control over the data transformation and import process, allowing for tailored solutions.

Maintenance requirements

Airbyte: Requires less ongoing maintenance once set up, with automated scheduling and error handling.

Manual: Needs more regular attention and potential script updates as data structures or requirements change.

Error handling and recovery

Airbyte: Includes built-in error handling and logging, with options for automatic retries.

Manual: Error handling must be implemented manually, which can be more flexible but also more complex.

Use cases to sync data from SQL Server and Elasticsearch

Here are three practical use cases for syncing data between SQL Server and Elasticsearch:

1. E-commerce Product Catalog

An online retailer uses SQL Server to manage product inventory, pricing, and order processing. They sync this data to Elasticsearch to power their website's search functionality.

Benefits

  • Fast, relevant product searches with features like faceted filtering and autocomplete
  • Real-time inventory updates reflected in search results
  • Improved search relevance using Elasticsearch’s scoring algorithms
  • Ability to handle high search volumes during peak shopping periods

2. Log Analysis for a Financial Application

A banking application stores transactional data in SQL Server but needs to analyze logs for security and performance monitoring.

Benefits

  • Real-time insights into application performance and security events
  • Ability to search and correlate logs across multiple systems and timeframes
  • Scalable storage for large volumes of log data
  • Creation of dynamic dashboards for monitoring and alerting

3. Content Management System (CMS)

A media company uses a CMS built on SQL Server but needs better search capabilities for its vast content library.

Benefits

  • Improved content discovery for users with full-text search across articles, videos, and metadata
  • Fast autosuggestions and “related content” features
  • Ability to search within specific content types, date ranges, or categories

Wrapping Up

To summarize, this tutorial has shown you how to:

  1. Configure a Microsoft SQL Server (MSSQL) account as an Airbyte data source connector.
  2. Configure ElasticSearch as a data destination connector.
  3. Create an Airbyte data pipeline that will automatically be moving data directly from Microsoft SQL Server (MSSQL) to ElasticSearch after you set a schedule

With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.

We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

Frequently Asked Questions

What data can you extract from Microsoft SQL Server (MSSQL)?

MSSQL - SQL Server provides access to a wide range of data types, including:  

1. Relational data: This includes tables, views, and stored procedures that are used to store and manipulate data in a structured format.  

2. Non-relational data: This includes data that is not stored in a structured format, such as XML documents, JSON objects, and binary data.  

3. Spatial data: This includes data that is related to geographic locations, such as maps, coordinates, and spatial queries.  

4. Time-series data: This includes data that is related to time, such as timestamps, dates, and time intervals.  

5. Graph data: This includes data that is related to relationships between entities, such as social networks, supply chains, and organizational structures.  

6. Machine learning data: This includes data that is used for training and testing machine learning models, such as feature vectors, labels, and performance metrics.  

7. Streaming data: This includes data that is generated in real-time, such as sensor data, log files, and social media feeds.

What data can you transfer to ElasticSearch?

You can transfer a wide variety of data to ElasticSearch. This usually includes structured, semi-structured, and unstructured data like transaction records, log files, JSON data, CSV files, and more, allowing robust, scalable data integration and analysis.

What are top ETL tools to transfer data from Microsoft SQL Server (MSSQL) to ElasticSearch?

The most prominent ETL tools to transfer data from Microsoft SQL Server (MSSQL) to ElasticSearch include:

  • Airbyte
  • Fivetran
  • Stitch
  • Matillion
  • Talend Data Integration

These tools help in extracting data from Microsoft SQL Server (MSSQL) and various sources (APIs, databases, and more), transforming it efficiently, and loading it into ElasticSearch and other databases, data warehouses and data lakes, enhancing data management capabilities.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter