Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data from My Hours. Log in to your My Hours account and navigate to the reports or data export section. Select the data you want to export and choose a suitable format, typically CSV or Excel, which will be easy to work with later. Download the file to your local machine.
Before importing the data into Snowflake, ensure that it is clean and structured appropriately. Open the exported file and check for any inconsistencies or errors in the data. Make any necessary adjustments to ensure data integrity, such as correcting date formats or removing duplicates.
If you haven't already, sign up for a Snowflake account and create a data warehouse. Once your account is set up, log in to the Snowflake console and create a data warehouse. This warehouse will act as a computational resource for processing and querying your data.
Using the Snowflake console, create a new database to store your data. Within this database, create a new table that matches the structure of your My Hours data. Define the table schema by specifying the column names and data types that correspond to the data in your CSV or Excel file.
Before you can load data into the table, upload the exported file to a Snowflake stage. Use the Snowflake user interface or the SnowSQL command-line tool to create an internal stage and upload the file. The stage acts as a temporary location for your file before loading it into the database.
With the data file staged, execute a COPY INTO command to load the data into your Snowflake table. This SQL command will read the data from the staged file and insert it into the table you've created. Ensure the column mappings between your file and table are correct to avoid errors during the load.
After loading the data, verify that it has been correctly imported into Snowflake. Run a few queries against the table to ensure that the data is accurate and complete. Check for any discrepancies or missing data and correct them if necessary. Once verified, your data is now ready for analysis and reporting within Snowflake.
By following these steps, you can successfully move data from My Hours to Snowflake Data Cloud without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
My Hours was launched back in 2002 and it is a cloud-based time-tracking solution best suited for small teams and freelancers. Since then My Hours has been rewritten twice to meet the growing demands and it is a product of Spica, a company headquartered in Ljubljana with 100+ employees. The users of My Hours can start time tracking on unlimited projects and tasks in seconds which easily generates insightful reports and create invoices.
My Hours' API provides access to a variety of data related to time tracking and project management. The following are the categories of data that can be accessed through the API:
1. Time tracking data: This includes information about the time spent on tasks, projects, and clients. It includes start and end times, duration, and any notes or comments associated with the time entry.
2. Project data: This includes information about the projects being worked on, such as project name, description, status, and associated tasks.
3. Task data: This includes information about the individual tasks within a project, such as task name, description, status, and associated time entries.
4. Client data: This includes information about the clients being worked with, such as client name, contact information, and associated projects.
5. User data: This includes information about the users of the My Hours platform, such as user name, email address, and associated time entries, projects, and tasks.
Overall, the My Hours API provides a comprehensive set of data that can be used to analyze and optimize time tracking and project management processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: