

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by understanding the format and access method of the news data source. Determine whether the data is available via an API, RSS feed, or as downloadable files. Ensure you have the necessary access credentials or permissions to retrieve the data.
Prepare your local or cloud-based environment for data processing. Install necessary tools, such as Python or another programming language that can interact with both your data source and Amazon S3. Ensure you have access to AWS SDKs (e.g., Boto3 for Python) for interacting with S3.
Write a script to fetch data from the news source. For APIs, use HTTP requests to access data endpoints. If using an RSS feed, parse the feed to extract articles. Store this data temporarily in a suitable file format (e.g., JSON, CSV) on your local machine or a temporary cloud instance.
If necessary, process the retrieved data to meet your storage requirements. This can include cleaning, transforming, or aggregating the data. Ensure the data is structured properly for storage in S3, possibly converting it to a more storage-efficient format like Parquet or keeping it in its original format if appropriate.
Install and configure the AWS Command Line Interface (CLI) if you haven't already. This involves setting up your AWS credentials and configuring the CLI with `aws configure`. You will need your AWS Access Key ID, Secret Access Key, region, and output format.
Use either the AWS CLI or a script using AWS SDKs to upload your processed data files to a specified S3 bucket. For example, using the CLI, you can run:
```bash
aws s3 cp /path/to/local/file s3://your-bucket-name/path/to/s3/
```
Ensure you have appropriate permissions to write to the S3 bucket.
Confirm that the data has been successfully uploaded to S3 by checking the S3 bucket through the AWS Management Console or by listing the contents using AWS CLI:
```bash
aws s3 ls s3://your-bucket-name/path/to/s3/
```
Verify file integrity by comparing file sizes or checksums if necessary.
By following these steps, you can efficiently move data from a news data source to an Amazon S3 bucket without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
NewsData is an online platform that provides updated news and information related to energy policy affairs in California and the Southwest. News data is one kinds of information that is collected using web scraping tools from a large number of news sources and outlets from across the internet. News Data Network is a reliable source of lifestyle news content. NewsData offers a common frame of reference for thousands of energy professionals, keeping them well-informed on Western energy policy, markets, resources, and other topics essential to their work.
Newsdata's API provides access to a wide range of data related to news and media. The following are the categories of data that can be accessed through the API:
1. News articles: The API provides access to news articles from various sources, including major news outlets and smaller publications.
2. News sources: The API provides information about news sources, including their names, URLs, and other relevant details.
3. News topics: The API provides information about news topics, including their names, descriptions, and other relevant details.
4. News events: The API provides information about news events, including their names, dates, locations, and other relevant details.
5. News sentiment: The API provides information about the sentiment of news articles, including whether they are positive, negative, or neutral.
6. News trends: The API provides information about news trends, including which topics are currently popular and which are declining in popularity.
7. News analytics: The API provides access to various analytics related to news, including traffic data, engagement metrics, and other relevant information.
Overall, Newsdata's API provides a comprehensive set of data related to news and media, making it a valuable resource for journalists, researchers, and other professionals in the industry.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





