Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
Sync with Airbyte
1. Open the Airbyte dashboard and click on "Sources" on the left-hand side of the screen.
2. Click on the "Create Connection" button and select "Parquet File" from the list of available connectors.
3. Enter a name for your connection and click on "Next".
4. In the "Configuration" tab, enter the path to your Parquet file in the "File Path" field.
5. If your Parquet file is password-protected, enter the password in the "Password" field.
6. If your Parquet file is encrypted, select the appropriate encryption type from the "Encryption Type" dropdown menu and enter the encryption key in the "Encryption Key" field.
7. Click on "Test Connection" to ensure that your credentials are correct and that Airbyte can connect to your Parquet file.
8. If the test is successful, click on "Create" to save your connection.
9. You can now use this connection to create a new Airbyte pipeline and start syncing data from your Parquet file to your destination.
1. First, you need to have a MySQL database set up and running. Ensure that you have the necessary credentials to access the database.
2. Log in to your Airbyte account and navigate to the "Destinations" tab.
3. Click on the "Add Destination" button and select "MySQL" from the list of available connectors.
4. Enter the necessary details such as the host, port, username, password, and database name. Ensure that the details are accurate and match the credentials you have for your MySQL database.
5. Test the connection to ensure that Airbyte can successfully connect to your MySQL database. If the connection is successful, you will receive a confirmation message.
6. Once the connection is established, you can configure the settings for your MySQL destination connector. You can choose to enable or disable certain features such as SSL encryption, bulk loading, and more.
7. You can also set up the schema mapping for your MySQL database. This involves mapping the fields from your source data to the corresponding fields in your MySQL database.
8. Once you have configured the settings and schema mapping, you can start syncing data from your source to your MySQL database. You can choose to run the sync manually or set up a schedule for automatic syncing.
9. Monitor the sync process to ensure that data is being transferred accurately and efficiently. You can view the sync logs and troubleshoot any issues that may arise.
10. Congratulations! You have successfully connected your MySQL destination connector on Airbyte and can now start syncing data from your source to your MySQL database.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Parquet File is a columnar storage file format that is designed to store and process large amounts of data efficiently. It is an open-source project that was developed by Cloudera and Twitter. Parquet File is optimized for use with Hadoop and other big data processing frameworks, and it is designed to work well with both structured and unstructured data. The format is highly compressed, which makes it ideal for storing and processing large datasets. Parquet File is also designed to be highly scalable, which means that it can be used to store and process data across multiple nodes in a distributed computing environment.
Parquet File's API gives access to various types of data, including:
• Structured data: Parquet files can store structured data in a columnar format, making it easy to query and analyze large datasets.
• Semi-structured data: Parquet files can also store semi-structured data, such as JSON or XML, allowing for more flexibility in data storage.
• Unstructured data: Parquet files can store unstructured data, such as text or binary data, making it possible to store a wide range of data types in a single file.
• Big data: Parquet files are designed for big data applications, allowing for efficient storage and processing of large datasets.
• Machine learning data: Parquet files are commonly used in machine learning applications, as they can store large amounts of data in a format that is optimized for processing by machine learning algorithms.
Overall, Parquet File's API provides access to a wide range of data types, making it a versatile tool for data storage and analysis in a variety of applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
Parquet File is a columnar storage file format that is designed to store and process large amounts of data efficiently. It is an open-source project that was developed by Cloudera and Twitter. Parquet File is optimized for use with Hadoop and other big data processing frameworks, and it is designed to work well with both structured and unstructured data. The format is highly compressed, which makes it ideal for storing and processing large datasets. Parquet File is also designed to be highly scalable, which means that it can be used to store and process data across multiple nodes in a distributed computing environment.
MySQL is an SQL (Structured Query Language)-based open-source database management system. An application with many uses, it offers a variety of products, from free MySQL downloads of the most recent iteration to support packages with full service support at the enterprise level. The MySQL platform, while most often used as a web database, also supports e-commerce and data warehousing applications, and more.
1. Open the Airbyte dashboard and click on "Sources" on the left-hand side of the screen.
2. Click on the "Create Connection" button and select "Parquet File" from the list of available connectors.
3. Enter a name for your connection and click on "Next".
4. In the "Configuration" tab, enter the path to your Parquet file in the "File Path" field.
5. If your Parquet file is password-protected, enter the password in the "Password" field.
6. If your Parquet file is encrypted, select the appropriate encryption type from the "Encryption Type" dropdown menu and enter the encryption key in the "Encryption Key" field.
7. Click on "Test Connection" to ensure that your credentials are correct and that Airbyte can connect to your Parquet file.
8. If the test is successful, click on "Create" to save your connection.
9. You can now use this connection to create a new Airbyte pipeline and start syncing data from your Parquet file to your destination.
1. First, you need to have a MySQL database set up and running. Ensure that you have the necessary credentials to access the database.
2. Log in to your Airbyte account and navigate to the "Destinations" tab.
3. Click on the "Add Destination" button and select "MySQL" from the list of available connectors.
4. Enter the necessary details such as the host, port, username, password, and database name. Ensure that the details are accurate and match the credentials you have for your MySQL database.
5. Test the connection to ensure that Airbyte can successfully connect to your MySQL database. If the connection is successful, you will receive a confirmation message.
6. Once the connection is established, you can configure the settings for your MySQL destination connector. You can choose to enable or disable certain features such as SSL encryption, bulk loading, and more.
7. You can also set up the schema mapping for your MySQL database. This involves mapping the fields from your source data to the corresponding fields in your MySQL database.
8. Once you have configured the settings and schema mapping, you can start syncing data from your source to your MySQL database. You can choose to run the sync manually or set up a schedule for automatic syncing.
9. Monitor the sync process to ensure that data is being transferred accurately and efficiently. You can view the sync logs and troubleshoot any issues that may arise.
10. Congratulations! You have successfully connected your MySQL destination connector on Airbyte and can now start syncing data from your source to your MySQL database.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
Parquet File's API gives access to various types of data, including:
• Structured data: Parquet files can store structured data in a columnar format, making it easy to query and analyze large datasets.
• Semi-structured data: Parquet files can also store semi-structured data, such as JSON or XML, allowing for more flexibility in data storage.
• Unstructured data: Parquet files can store unstructured data, such as text or binary data, making it possible to store a wide range of data types in a single file.
• Big data: Parquet files are designed for big data applications, allowing for efficient storage and processing of large datasets.
• Machine learning data: Parquet files are commonly used in machine learning applications, as they can store large amounts of data in a format that is optimized for processing by machine learning algorithms.
Overall, Parquet File's API provides access to a wide range of data types, making it a versatile tool for data storage and analysis in a variety of applications.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: