

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by familiarizing yourself with Pendo's API documentation. This will provide you with the necessary endpoints, authentication methods, and data structures available for extracting the required data. Note the API rate limits and any pagination requirements for large datasets.
To access Pendo's API, you'll need to authenticate using API keys or tokens. Navigate to the Pendo application, generate your API key, and document it securely. This key will be used for all subsequent API requests to ensure authorized access.
Write a script (using Python, Node.js, or another language of your choice) to make HTTP GET requests to the relevant Pendo API endpoints. Ensure the script handles pagination if the dataset is large. Parse the JSON responses to extract the data you need, and store it in a temporary format, such as CSV or JSON files, on your local machine or a cloud storage service.
Format the extracted data into a structure that matches your Snowflake table schema. If necessary, transform the data by cleaning, aggregating, or normalizing it. Use tools like Pandas in Python to handle any complex data transformations or to convert the data into CSV format, which is optimal for loading into Snowflake.
Log into your Snowflake account and ensure you have a database and schema ready to receive the data. Create a table if it does not already exist, ensuring that the table schema matches the structure of your prepared data. Define the necessary permissions and roles to allow data loading.
Utilize Snowflake's `COPY INTO` command to load the prepared CSV files into your Snowflake table. First, upload the CSV files to a Snowflake-compatible stage, such as an internal stage or an external stage (like Amazon S3 or Azure Blob Storage). Then execute the `COPY INTO` command to import the data from the stage into your Snowflake table. Monitor the process and check for any errors or data discrepancies.
After the data is loaded into Snowflake, perform a thorough validation to ensure data integrity. Run SQL queries to verify row counts, check for duplicates, and confirm that all fields have been populated correctly. Compare the results against the original data extracted from Pendo to ensure accuracy. Document any issues and resolve them as necessary, possibly by re-extracting and re-loading data.
By following these steps, you can successfully transfer data from Pendo to Snowflake without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Pendo is a product experience platform that enables marketers to deliver personalized in-app experiences and gather valuable customer insights. With Pendo, marketers can create targeted campaigns, walkthroughs, and product tours directly within their applications. This allows for contextual, relevant messaging that enhances user onboarding and adoption. Pendo also provides robust analytics and feedback tools, giving marketers visibility into feature usage, user journeys, and sentiment. By understanding how customers interact with their products, marketers can optimize experiences, drive engagement, and ultimately improve conversions and retention. Pendo's integrations with popular marketing automation and CRM systems streamline data sharing and enable coordinated cross-channel campaigns.
Pendo's API provides access to a wide range of data related to user behavior and product usage. The following are the categories of data that can be accessed through Pendo's API:
1. User data: This includes information about individual users such as their name, email address, and user ID.
2. Product data: This includes information about the product being used, such as the product name, version, and features.
3. Usage data: This includes information about how users are interacting with the product, such as which features they are using, how often they are using them, and how long they are spending on each feature.
4. Engagement data: This includes information about how engaged users are with the product, such as how frequently they are logging in, how often they are completing certain actions, and how long they are spending in the product.
5. Feedback data: This includes information about user feedback, such as ratings, reviews, and comments.
6. Conversion data: This includes information about how users are converting, such as how many users are signing up, how many are upgrading to paid plans, and how many are churning.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: