Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by creating a Pinterest Developer Account if you haven't already. This is essential to gain access to Pinterest's API, which will allow you to programmatically retrieve data from Pinterest Ads. You can do this by visiting the Pinterest Developers website and following their instructions to create an app.
Once your developer account is set up, create an application within your Pinterest Developer Account to obtain the necessary API access credentials. This typically includes a client ID and client secret, which are necessary for authenticating your requests to the Pinterest API.
Implement OAuth 2.0 authentication to interact with the Pinterest Ads API. This involves redirecting the user to Pinterest's OAuth server to get an access token. Use this token to authenticate your API requests. You may need to implement a server-side script to handle the OAuth flow and securely store the token for subsequent API calls.
Use the Pinterest Ads API to retrieve the data you need. This involves making HTTP GET requests to the relevant API endpoints using the access token obtained in the previous step. Ensure that you handle pagination if the data set is large, and parse the API response to extract the necessary data fields.
Before uploading the data to Amazon S3, format it appropriately. Convert the data into a structured format like CSV or JSON. This may involve cleaning the data or organizing it into a schema that aligns with your reporting needs.
Set up an Amazon S3 bucket where the data will be stored. Ensure you have the necessary permissions to upload data to the bucket. Configure appropriate security settings, such as bucket policies or IAM roles, to control access and protect your data.
Use the AWS SDK for your preferred programming language (e.g., Boto3 for Python) to upload the prepared data file to the S3 bucket. Write a script that handles the file transfer, ensuring that you specify the correct bucket name and object key. Verify that the upload is successful by checking the S3 bucket and ensuring the data file is present and accessible.
By following these steps, you can effectively transfer data from Pinterest Ads to Amazon S3 without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Pinterest Ads is a platform that allows businesses to promote their products and services to a highly engaged audience on Pinterest. With over 400 million monthly active users, Pinterest is a visual discovery engine that helps people find inspiration and ideas for their interests and hobbies. Pinterest Ads allows businesses to create and display ads in the form of Promoted Pins, Promoted Video Pins, and Promoted Carousel Pins. These ads can be targeted to specific audiences based on their interests, behaviors, and demographics. Pinterest Ads also provides analytics and insights to help businesses measure the performance of their ads and optimize their campaigns for better results.
Pinterest Ads API provides access to a wide range of data that can be used to optimize ad campaigns and improve targeting. The following are the categories of data that can be accessed through the Pinterest Ads API: 1. Ad performance data: This includes data on impressions, clicks, conversions, and other metrics related to ad performance.
2. Audience data: This includes data on the demographics, interests, and behaviors of the audience that engages with your ads.
3. Pin data: This includes data on the pins that users engage with, such as the type of content, the category, and the keywords associated with the pin.
4. Board data: This includes data on the boards that users engage with, such as the type of content, the category, and the keywords associated with the board.
5. Campaign data: This includes data on the campaigns that you run on Pinterest, such as the budget, targeting options, and ad formats.
6. Conversion data: This includes data on the actions that users take after clicking on your ads, such as purchases, sign-ups, and downloads.
Overall, the Pinterest Ads API provides a wealth of data that can be used to optimize ad campaigns and improve targeting, ultimately leading to better results and higher ROI.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: