Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Pivotal Tracker is a project management tool that helps teams collaborate and manage their work efficiently. It provides a simple and intuitive interface for creating and prioritizing tasks, tracking progress, and communicating with team members. With Pivotal Tracker, teams can easily plan and execute their projects, breaking them down into manageable chunks and assigning tasks to team members. The tool also provides real-time visibility into project status, allowing teams to quickly identify and address any issues that arise. Pivotal Tracker is designed to help teams work more effectively, delivering high-quality results on time and within budget.
Pivotal Tracker's API provides access to a wide range of data related to software development projects. The following are the categories of data that can be accessed through the API:
1. Projects: Information about the projects, including their names, descriptions, and IDs.
2. Stories: Details about the individual stories within a project, including their titles, descriptions, and statuses.
3. Epics: Information about the epics within a project, including their titles, descriptions, and statuses.
4. Tasks: Details about the tasks associated with a story, including their titles, descriptions, and statuses.
5. Comments: Information about the comments made on stories, epics, and tasks.
6. Memberships: Details about the members of a project, including their names, email addresses, and roles.
7. Labels: Information about the labels used to categorize stories within a project.
8. Iterations: Details about the iterations within a project, including their start and end dates.
9. Activity: Information about the activity within a project, including changes made to stories, epics, and tasks.
Overall, Pivotal Tracker's API provides a comprehensive set of data that can be used to track and manage software development projects.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
Pivotal Tracker is a project management tool that helps teams collaborate and manage their work efficiently. It provides a simple and intuitive interface for creating and prioritizing tasks, tracking progress, and communicating with team members. With Pivotal Tracker, teams can easily plan and execute their projects, breaking them down into manageable chunks and assigning tasks to team members. The tool also provides real-time visibility into project status, allowing teams to quickly identify and address any issues that arise. Pivotal Tracker is designed to help teams work more effectively, delivering high-quality results on time and within budget.
A fully managed data warehouse service in the Amazon Web Services (AWS) cloud, Amazon Redshift is designed for storage and analysis of large-scale datasets. Redshift allows businesses to scale from a few hundred gigabytes to more than a petabyte (a million gigabytes), and utilizes ML techniques to analyze queries, offering businesses new insights from their data. Users can query and combine exabytes of data using standard SQL, and easily save their query results to their S3 data lake.
1. Go to the Airbyte website and sign up for an account.
2. Once you have signed up, log in to your account and click on the ""Sources"" tab.
3. Scroll down until you find the ""Pivotal Tracker"" source connector and click on it.
4. Click on the ""Create new connection"" button.
5. Enter your Pivotal Tracker API token in the appropriate field.
6. Enter the name of your Pivotal Tracker project in the appropriate field.
7. Choose the data you want to sync from Pivotal Tracker to Airbyte.
8. Click on the ""Test"" button to make sure the connection is working properly.
9. If the test is successful, click on the ""Save & Sync"" button to start syncing your Pivotal Tracker data to Airbyte.
10. You can now use Airbyte to analyze and visualize your Pivotal Tracker data.
1. First, log in to your Airbyte account and navigate to the "Destinations" tab on the left-hand side of the screen.
2. Click on the "Add Destination" button and select "Redshift" from the list of available connectors.
3. Enter your Redshift database credentials, including the host, port, database name, username, and password.
4. Choose the schema you want to use for your data in Redshift.
5. Select the tables you want to sync from your source connector to Redshift.
6. Map the fields from your source connector to the corresponding fields in Redshift.
7. Choose the sync mode you want to use, either "append" or "replace."
8. Set up any additional options or filters you want to use for your sync.
9. Test your connection to ensure that your data is syncing correctly.
10. Once you are satisfied with your settings, save your configuration and start your sync.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
Pivotal Tracker's API provides access to a wide range of data related to software development projects. The following are the categories of data that can be accessed through the API:
1. Projects: Information about the projects, including their names, descriptions, and IDs.
2. Stories: Details about the individual stories within a project, including their titles, descriptions, and statuses.
3. Epics: Information about the epics within a project, including their titles, descriptions, and statuses.
4. Tasks: Details about the tasks associated with a story, including their titles, descriptions, and statuses.
5. Comments: Information about the comments made on stories, epics, and tasks.
6. Memberships: Details about the members of a project, including their names, email addresses, and roles.
7. Labels: Information about the labels used to categorize stories within a project.
8. Iterations: Details about the iterations within a project, including their start and end dates.
9. Activity: Information about the activity within a project, including changes made to stories, epics, and tasks.
Overall, Pivotal Tracker's API provides a comprehensive set of data that can be used to track and manage software development projects.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: