Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by thoroughly reviewing Plaid's API documentation. Understand how to authenticate, retrieve financial data, and manage API keys. Plaid provides RESTful APIs, which you will use to extract data. Familiarize yourself with endpoints and data formats (usually JSON).
Obtain API credentials from your Plaid account, which typically include a client ID, secret, and a public key. Implement authentication in your custom script to securely connect to Plaid's API. You can use Plaid's sandbox environment for testing before moving to production.
Write a script in a language of your choice (such as Python or JavaScript) to call Plaid's API endpoints. Use HTTPS requests to retrieve the financial data you need. Store this data locally in a structured format like JSON or CSV, depending on your requirements.
Clean and format the extracted data to match the schema required by Starburst Galaxy. This may involve data transformation tasks such as renaming fields, changing data types, and normalizing data. Use scripting to automate these preprocessing tasks.
Ensure you have access to a Starburst Galaxy account and that your environment is configured correctly. Understand the data ingestion process and what formats are supported for data uploads. Make sure you have the necessary permissions to upload data.
Use Starburst Galaxy's native data ingestion capabilities to upload your preprocessed data. This might involve using command-line tools or web interfaces provided by Starburst to transfer files from your local system to their platform.
Once the data is uploaded to Starburst Galaxy, run queries to verify that the data matches what was extracted from Plaid. Check for completeness and integrity to ensure no data was lost or corrupted during the transfer process. Adjust your scripts as necessary to address any discrepancies.
By following this guide, you can manually move data from Plaid to Starburst Galaxy without relying on third-party connectors, maintaining control over the entire data transfer process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Plaid is a technology platform that makes it possible for companies to develop digitally-enabled financial systems. It enables developers to build financial services and applications safely and easily for financial institutions of any size. Plaid powers many financial apps including Venmo, Betterment, Chime, and Dave, encrypting your data before sharing it with your chosen app to keep your connection secure.
Plaid's API provides access to a wide range of financial data, including:
1. Account Information: Plaid's API allows access to account information such as account balances, transaction history, and account holder details.
2. Transactions: Plaid's API provides access to transaction data, including transaction amounts, dates, and descriptions.
3. Investments: Plaid's API allows access to investment account data, including holdings, transactions, and performance metrics.
4. Loans: Plaid's API provides access to loan account data, including loan balances, payment history, and interest rates.
5. Identity Verification: Plaid's API allows for identity verification through bank account information, including name, address, and account ownership.
6. Authentication: Plaid's API provides authentication services to verify account ownership and prevent fraud.
7. Payment Initiation: Plaid's API allows for payment initiation through bank accounts, enabling users to make payments directly from their accounts.
Overall, Plaid's API provides a comprehensive suite of financial data services that can be used by developers to build innovative financial applications and services.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





