Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by using the Pocket API to extract data. You will need to authenticate with the Pocket API using OAuth. Once authenticated, use the Pocket API's `get` method to extract the data you need. Make sure to store this data in a file format that is easy to upload, such as JSON or CSV.
Install and configure the AWS Command Line Interface (CLI) on your local machine. This tool will allow you to interact with AWS services directly from your command line. Use the command `aws configure` to set up your access credentials, default region, and output format.
Log in to your AWS Management Console and navigate to the S3 service to create a new bucket. This bucket will be used to temporarily store your data before it is moved into the data lake. Ensure the bucket name is unique across all of AWS and choose the appropriate region for your data.
Use the AWS CLI to upload your extracted data files to the newly created S3 bucket. The command to upload a file is `aws s3 cp [file-path] s3://[bucket-name]/`. This step ensures your data is securely stored in AWS and ready for further processing.
AWS Glue is a service that prepares your data for analytics. In the AWS Management Console, navigate to AWS Glue and define a new crawler to catalog the data stored in your S3 bucket. Set up a database in Glue where the metadata of your data will reside.
Run the AWS Glue crawler to scan the data in your S3 bucket and populate the Glue Data Catalog with metadata. Once the catalog is created, use Glue ETL jobs to transform the data as needed to fit the schema or format requirements of your data lake.
AWS Lake Formation makes it easy to set up a secure data lake. Navigate to Lake Formation in the AWS Management Console and register your S3 bucket. Use the Glue Data Catalog to define your data lake's data sources and structure. Finally, load the transformed data into your data lake, ensuring the appropriate permissions and access controls are in place.
By following these steps, you will have successfully moved data from Pocket to an AWS Data Lake without relying on any third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Pocket, the premier Save for Later app, lets you consume and share content whenever you want, wherever you want, even without an internet connection. When you come across an article, video or a webpage you'd like to readbut can't at that time, save it to Pocket. You can then read or watch it whenever you have a moment, whether it's on the couch, during your commute, on the plane, train, or practically anywhere.
Pocket's API provides access to various types of data related to the user's Pocket account. The categories of data that can be accessed through the API are:
1. Articles: This includes the full text of articles saved by the user, along with metadata such as title, author, and URL.
2. Tags: The API allows access to the tags associated with each article, which can be used to organize and filter saved articles.
3. Favorites: The API provides access to the user's favorite articles, which can be used to highlight important or frequently referenced content.
4. Reads: The API tracks the user's reading history, including the date and time each article was read.
5. Recommendations: Pocket's API can provide personalized article recommendations based on the user's reading history and preferences.
6. Stats: The API provides access to various statistics related to the user's Pocket account, such as the number of articles saved, read, and favorited.
7. Authentication: The API allows developers to authenticate users and access their Pocket data securely.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





