

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from PrestaShop. Navigate to the PrestaShop admin panel, and access the section containing the data you want to export, such as products or customers. Use the built-in export functionality to download the data in a CSV format. Make sure to choose the appropriate fields and filters to include only the necessary data for your Typesense setup.
Once you have the CSV file, review and clean the data to ensure it matches the schema expected by Typesense. This involves checking for any missing values, ensuring data types are consistent, and reformatting any fields as needed. You might need to convert the data to JSON format, as Typesense works with JSON documents.
If you haven't already, set up a Typesense server. You can do this by downloading the Typesense binary for your operating system from the official website. Follow the installation instructions to run the Typesense server locally or on a cloud instance. Make sure to configure the server according to your requirements, such as setting up authentication and defining your data schema.
Before importing data, define the schema for the collection in Typesense. The schema should outline the fields, types, and any specific indexing options. Use the Typesense API to create a new collection with this schema. This ensures that when you import the data, it aligns correctly with the expected format.
Convert your cleaned and prepared CSV data into JSON format. You can use a script in a programming language like Python to read the CSV and transform each row into a JSON object that matches your Typesense schema. This script should output a JSON file or directly send the data to the Typesense server.
With your JSON data ready, use the Typesense API to import the data into your newly created collection. You can use a script or a command-line tool like `curl` to send a batch of JSON documents to the Typesense server. Make sure to handle any errors and verify that all data has been successfully imported.
After importing, verify the data in Typesense by querying the collection using the Typesense API. Check that all fields are indexed correctly and that search queries return expected results. Perform tests to ensure data accuracy and completeness, resolving any issues that arise during the verification process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
PrestaShop is an open-source e-commerce platform whose cutting-edge technology powers over 300,000 e-commerce businesses globally. The PrestaShop mission is to allow the open-source community to “put their heads together” to develop superior eCommerce software—which they achieved in 2016, winning CMS Critic Award for Best eCommerce Software. The perfect solution for creating and growing an online business, PrestaShop provides all the features needed to achieve success.
PrestaShop's API provides access to a wide range of data related to e-commerce stores. The following are the categories of data that can be accessed through PrestaShop's API:
1. Products: Information related to products such as name, description, price, stock, images, and categories.
2. Customers: Data related to customers such as name, email, address, and order history.
3. Orders: Information related to orders such as order number, customer details, products ordered, and payment information.
4. Categories: Data related to product categories such as name, description, and parent categories.
5. Manufacturers: Information related to manufacturers such as name, description, and logo.
6. Suppliers: Data related to suppliers such as name, address, and contact information.
7. Carriers: Information related to shipping carriers such as name, description, and shipping rates.
8. Employees: Data related to employees such as name, email, and access permissions.
9. Languages: Information related to languages used in the store such as name, code, and translations.
10. Currencies: Data related to currencies used in the store such as name, code, and exchange rates.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: