

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Review the API documentation thoroughly to understand the endpoints, authentication methods, data formats (such as JSON or XML), and rate limits. This understanding is crucial for effective data retrieval and handling.
Install necessary tools and libraries on your local machine. For example, ensure you have Python installed along with libraries like `requests` for API calls, and `mysql-connector-python` for MySQL database interaction. These libraries will help you write scripts to fetch and store data.
Write a Python script to make HTTP requests to the API. Use the `requests` library to send GET requests to the API endpoints and retrieve the data. Handle authentication as required by the API, and ensure you manage rate limits to avoid being blocked.
Once you have the raw data from the API, parse it into a structured format. For JSON data, use Python’s built-in `json` module to convert it into dictionaries or lists. For XML data, consider using libraries like `xml.etree.ElementTree` to parse and extract necessary information.
Plan and design a database schema in MySQL that can efficiently store the data you are retrieving. This involves defining tables, columns, data types, and relationships. Use MySQL Workbench or a similar tool to create and visualize your schema.
Use the `mysql-connector-python` library to connect to your MySQL database from the Python script. Write SQL `INSERT` statements to transfer the parsed data into your database. Ensure you handle any potential errors or exceptions, such as duplicate entries or data type mismatches.
To keep your database updated, automate the entire process using cron jobs on Linux or Task Scheduler on Windows. This involves scheduling your Python script to run at regular intervals, ensuring continuous data flow from the API to your MySQL database.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Public API connector permits users the flexibility to connect to any existing REST API and quickly abstract the necessary data. The API Connector also permits you to connect to almost any external API from Bubble. It provides Azure Active Directory with the information needed to call the API endpoint by defining the HTTP endpoint URL and authentication for the API call. API Connector is a dynamic, comfortable-to-use extension that pulls data from any API into Google Sheets.
Public APIs provide access to a wide range of data, including:
1. Weather data: Public APIs provide access to real-time weather data, including temperature, humidity, wind speed, and precipitation.
2. Financial data: Public APIs provide access to financial data, including stock prices, exchange rates, and economic indicators.
3. Social media data: Public APIs provide access to social media data, including user profiles, posts, and comments.
4. Geographic data: Public APIs provide access to geographic data, including maps, geocoding, and routing.
5. Government data: Public APIs provide access to government data, including census data, crime statistics, and public health data.
6. News data: Public APIs provide access to news data, including headlines, articles, and trending topics.
7. Sports data: Public APIs provide access to sports data, including scores, schedules, and player statistics.
8. Entertainment data: Public APIs provide access to entertainment data, including movie and TV show information, music data, and gaming data.
Overall, Public APIs provide access to a vast array of data, making it easier for developers to build applications and services that leverage this data to create innovative solutions.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: