

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Ensure that your data is organized in a CSV file. Each column in the CSV should correspond to a field in your MySQL database table. Check for and clean any anomalies such as missing values, incorrect data types, or special characters that might cause issues during import.
Use the MySQL command line or a graphical client like MySQL Workbench to create a database and a table that matches the structure of your CSV file. Define appropriate data types for each column to ensure the data integrity and compatibility with your CSV data.
```sql
CREATE DATABASE my_database;
USE my_database;
CREATE TABLE my_table (
id INT AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(255),
age INT,
email VARCHAR(255)
-- Add other columns as necessary
);
```
Copy the CSV file to the MySQL server machine. If you're working on a remote server, you can use secure copy (SCP) or file transfer protocol (FTP) to move the file. Ensure the file is located in a directory accessible by the MySQL server.
Modify the MySQL server's permissions if necessary to allow file imports. You need to ensure that the MySQL user you are using has the FILE privilege.
```sql
GRANT FILE ON *.* TO 'your_user'@'localhost';
FLUSH PRIVILEGES;
```
Use the `LOAD DATA INFILE` command to import the CSV data into your MySQL table. This command reads the CSV file and inserts the data into the specified table. You might need to specify options like `FIELDS TERMINATED BY` and `LINES TERMINATED BY` to match your CSV structure.
```sql
LOAD DATA INFILE '/path/to/your/file.csv'
INTO TABLE my_table
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
IGNORE 1 ROWS; -- Use this if the first row contains column headers
```
After loading the data, perform checks to ensure the data was imported correctly. Run SELECT queries to verify that all rows were imported and check for any inconsistencies or errors.
```sql
SELECT * FROM my_table;
```
Once the data import is verified, remove or secure any temporary CSV files on the server to prevent unauthorized access or accidental deletions. Ensure your MySQL server permissions are secure and revert any permissions changes that are no longer necessary.
By following these steps, you can successfully move data from a CSV file to a MySQL database without the need for third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Recreation.gov is a comprehensive online platform that serves as a one-stop destination for outdoor recreation enthusiasts in the United States. It provides information, reservations, and access to a wide range of outdoor activities and attractions, including national parks, forests, wildlife refuges, campgrounds, and more. Users can explore detailed listings, check availability, and make reservations for camping, hiking, fishing, boating, and other recreational activities. Recreation.gov streamlines the process of planning outdoor adventures, offering a convenient and centralized platform for individuals and families to discover, book, and enjoy outdoor experiences across various federal lands and recreational sites in the United States.
Recreation.gov's API provides access to a wide range of data related to outdoor recreation activities and facilities across the United States. The following are the categories of data that can be accessed through the API:
1. Campgrounds: Information on campgrounds, including availability, location, amenities, and pricing.
2. Tours and Tickets: Information on tours and tickets for various recreational activities, such as hiking, fishing, and boating.
3. Permits and Reservations: Information on permits and reservations for various recreational activities, such as camping, hiking, and fishing.
4. Facilities: Information on facilities, such as picnic areas, boat ramps, and visitor centers.
5. Events: Information on events, such as festivals, concerts, and educational programs.
6. Alerts and Closures: Information on alerts and closures related to recreational areas, such as weather-related closures and wildfire alerts.
7. Trails: Information on trails, including location, difficulty level, and length.
8. Points of Interest: Information on points of interest, such as historical sites, scenic overlooks, and wildlife viewing areas.
Overall, Recreation.gov's API provides a comprehensive set of data that can be used to plan and book outdoor recreation activities across the United States.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: