Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Retently account. Navigate to the data export section, often found under reports or data management. Select the data you wish to export, ensuring you choose a format that can easily be processed by your tools, such as CSV or JSON. Initiate the export and download the file to your local machine.
Ensure you have a working Apache Iceberg environment. This typically involves setting up a compatible data processing engine like Apache Spark or Apache Flink, which supports Iceberg. Install the necessary dependencies and configure your environment to connect to your chosen Iceberg-compatible storage system (e.g., Hadoop HDFS, S3, or a compatible file system).
Analyze the exported data to understand its structure. Define the corresponding schema in Apache Iceberg that matches the data format from Retently. This will involve specifying the column names, data types, and any necessary transformations to align with Iceberg's schema requirements.
Use a script or a data processing tool (like a Python script utilizing Pandas, or a shell script with awk/sed for CSV) to transform the exported data into a format that aligns with the schema defined in Iceberg. This might involve data cleaning, type casting, and reformatting date fields to match the expected data types in Iceberg.
With the data transformed, write a script using a data processing engine that supports Iceberg (e.g., Apache Spark). This script should read the local file (CSV or JSON), apply the schema, and write the data to an Iceberg table. Ensure the script is configured to handle partitions and any other Iceberg-specific configurations required for optimal data storage and retrieval.
Once the data is loaded into the Iceberg table, perform verification checks. Use SQL queries through your data processing engine to count rows, check for data integrity, and ensure that all fields are correctly populated as per the schema definitions. Confirm that no data was lost or corrupted during the transfer.
If you need to regularly update the Iceberg tables with new data from Retently, set up a repeatable process. This can involve writing a script or a cron job that automates the steps of exporting, transforming, and loading data into Iceberg. Document the process clearly and test it to ensure that it runs smoothly without manual intervention.
By following these steps, you can successfully move data from Retently to Apache Iceberg using only native tools and processes, without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Retently is a tool for measuring and increasing customer satisfaction and loyalty through Net Promoter Score surveys and collecting feedback and The tool is packed with various robust features to help you segment your audience, create custom polls, and collect multichannel polls. With Retently, businesses can collect customer feedback and analyze the results with advanced analytics and reports for corrective action. Retently's cloud-based platform is designed to help businesses track their Net Promoter Score, collect valuable customer reviews, and build customer loyalty by converting detractors into repeat customers.
Retently's API provides access to various types of data related to customer feedback and satisfaction. The categories of data that can be accessed through Retently's API include:
1. Customer feedback data: This includes data related to customer feedback, such as NPS scores, customer comments, and ratings.
2. Customer satisfaction data: This includes data related to customer satisfaction, such as customer satisfaction scores, customer loyalty, and customer retention rates.
3. Customer behavior data: This includes data related to customer behavior, such as customer purchase history, customer demographics, and customer preferences.
4. Campaign data: This includes data related to Retently's campaigns, such as campaign performance metrics, campaign engagement rates, and campaign conversion rates.
5. User data: This includes data related to Retently's users, such as user activity, user preferences, and user engagement.
Overall, Retently's API provides access to a wide range of data related to customer feedback and satisfaction, which can be used to improve customer experience and drive business growth.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





