How to load data from S3 to Snowflake destination

Learn how to use Airbyte to synchronize your S3 data into Snowflake destination within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a S3 connector in Airbyte

Connect to S3 or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Snowflake destination for your extracted S3 data

Select Snowflake destination where you want to import data from your S3 source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the S3 to Snowflake destination in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Old Automated Content

TL;DR

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps:

  1. set up S3 as a source connector (using Auth, or usually an API key)
  2. set up Snowflake destination as a destination connector
  3. define which data you want to transfer and how frequently

You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud.

This tutorial’s purpose is to show you how.

What is S3

Amazon S3 (Simple Storage Service) is a cloud-based object storage service that provides developers and IT teams with secure, durable, and scalable storage for their data. It allows users to store and retrieve any amount of data from anywhere on the web, making it easy to build and scale applications, backup and archive data, and analyze data. S3 is designed to provide high availability and durability, with data automatically replicated across multiple availability zones within a region. It also offers a range of features such as versioning, lifecycle policies, and access control to help users manage their data effectively.

What is Snowflake destination

A cloud data platform, Snowflake Data Cloud provides a warehouse-as-a-service built specifically for the cloud. The Snowflake platform is designed to empower many types of data workloads, and offers secure, immediate, governed access to a comprehensive network of data. Snowflake’s innovative technology goes above the capabilities of the ordinary database, supplying users all the functionality of database storage, query processing, and cloud services in one package.

Integrate S3 with Snowflake destination in minutes

Try for free now

Prerequisites

  1. A S3 account to transfer your customer data automatically from.
  2. A Snowflake destination account.
  3. An active Airbyte Cloud account, or you can also choose to use Airbyte Open Source locally. You can follow the instructions to set up Airbyte on your system using docker-compose.

Airbyte is an open-source data integration platform that consolidates and streamlines the process of extracting and loading data from multiple data sources to data warehouses. It offers pre-built connectors, including S3 and Snowflake destination, for seamless data migration.

When using Airbyte to move data from S3 to Snowflake destination, it extracts data from S3 using the source connector, converts it into a format Snowflake destination can ingest using the provided schema, and then loads it into Snowflake destination via the destination connector. This allows businesses to leverage their S3 data for advanced analytics and insights within Snowflake destination, simplifying the ETL process and saving significant time and resources.

Step 1: Set up S3 as a source connector

1. Open the Airbyte dashboard and click on "Sources" from the left-hand menu.
2. Click on the "Create Source" button and select "S3" from the list of available connectors.
3. Enter a name for your S3 source and click on "Next".
4. Enter your AWS access key ID and secret access key in the respective fields. You can find these credentials in your AWS account under "Security Credentials".
5. Select the AWS region where your S3 bucket is located from the dropdown menu.
6. Enter the name of your S3 bucket in the "Bucket Name" field.
7. If your S3 bucket is not in the root directory, enter the path to the directory in the "Path Prefix" field.
8. If you want to include only certain files in your data sync, you can enter a file pattern in the "File Pattern" field. For example, "*.csv" will only include CSV files.
9. Click on "Test" to verify your credentials and connection to the S3 bucket.
10. If the test is successful, click on "Create Source" to save your S3 source connector.Once your S3 source connector is set up, you can use it to create a new Airbyte pipeline and sync data from your S3 bucket to your destination of choice.

Step 2: Set up Snowflake destination as a destination connector

1. First, navigate to the Airbyte website and log in to your account.

2. Once you are logged in, click on the "Destinations" tab on the left-hand side of the screen.

3. Scroll down until you find the Snowflake Data Cloud destination connector and click on it.

4. You will be prompted to enter your Snowflake account information, including your account name, username, and password.

5. After entering your account information, click on the "Test" button to ensure that the connection is successful.

6. If the test is successful, click on the "Save" button to save your Snowflake Data Cloud destination connector settings.

7. You can now use the Snowflake Data Cloud destination connector to transfer data from your Airbyte sources to your Snowflake account.

8. To set up a data transfer, navigate to the "Sources" tab on the left-hand side of the screen and select the source you want to transfer data from.

9. Click on the "Create New Connection" button and select the Snowflake Data Cloud destination connector as your destination.

10. Follow the prompts to set up your data transfer, including selecting the tables or data sources you want to transfer and setting up any necessary transformations or mappings.

11. Once you have set up your data transfer, click on the "Run" button to start the transfer process.

Step 3: Set up a connection to sync your S3 data to Snowflake destination

Once you've successfully connected S3 as a data source and Snowflake destination as a destination in Airbyte, you can set up a data pipeline between them with the following steps:

  1. Create a new connection: On the Airbyte dashboard, navigate to the 'Connections' tab and click the '+ New Connection' button.
  2. Choose your source: Select S3 from the dropdown list of your configured sources.
  3. Select your destination: Choose Snowflake destination from the dropdown list of your configured destinations.
  4. Configure your sync: Define the frequency of your data syncs based on your business needs. Airbyte allows both manual and automatic scheduling for your data refreshes.
  5. Select the data to sync: Choose the specific S3 objects you want to import data from towards Snowflake destination. You can sync all data or select specific tables and fields.
  6. Select the sync mode for your streams: Choose between full refreshes or incremental syncs (with deduplication if you want), and this for all streams or at the stream level. Incremental is only available for streams that have a primary cursor.
  7. Test your connection: Click the 'Test Connection' button to make sure that your setup works. If the connection test is successful, save your configuration.
  8. Start the sync: If the test passes, click 'Set Up Connection'. Airbyte will start moving data from S3 to Snowflake destination according to your settings.

Remember, Airbyte keeps your data in sync at the frequency you determine, ensuring your Snowflake destination data warehouse is always up-to-date with your S3 data.

Use Cases to transfer your S3 data to Snowflake destination

Integrating data from S3 to Snowflake destination provides several benefits. Here are a few use cases:

  1. Advanced Analytics: Snowflake destination’s powerful data processing capabilities enable you to perform complex queries and data analysis on your S3 data, extracting insights that wouldn't be possible within S3 alone.
  2. Data Consolidation: If you're using multiple other sources along with S3, syncing to Snowflake destination allows you to centralize your data for a holistic view of your operations, and to set up a change data capture process so you never have any discrepancies in your data again.
  3. Historical Data Analysis: S3 has limits on historical data. Syncing data to Snowflake destination allows for long-term data retention and analysis of historical trends over time.
  4. Data Security and Compliance: Snowflake destination provides robust data security features. Syncing S3 data to Snowflake destination ensures your data is secured and allows for advanced data governance and compliance management.
  5. Scalability: Snowflake destination can handle large volumes of data without affecting performance, providing an ideal solution for growing businesses with expanding S3 data.
  6. Data Science and Machine Learning: By having S3 data in Snowflake destination, you can apply machine learning models to your data for predictive analytics, customer segmentation, and more.
  7. Reporting and Visualization: While S3 provides reporting tools, data visualization tools like Tableau, PowerBI, Looker (Google Data Studio) can connect to Snowflake destination, providing more advanced business intelligence options. If you have a S3 table that needs to be converted to a Snowflake destination table, Airbyte can do that automatically.

Wrapping Up

To summarize, this tutorial has shown you how to:

  1. Configure a S3 account as an Airbyte data source connector.
  2. Configure Snowflake destination as a data destination connector.
  3. Create an Airbyte data pipeline that will automatically be moving data directly from S3 to Snowflake destination after you set a schedule

With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.

We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that supports both incremental and full refreshes, for databases of any size.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Jean-Mathieu Saponaro
Data & Analytics Senior Eng Manager

"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"

Learn more
Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more
Alexis Weill
Data Lead

“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria.
The value of being able to scale and execute at a high level by maximizing resources is immense”

Learn more

Sync with Airbyte

How to Sync S3 to Snowflake destination Manually

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

Amazon S3 (Simple Storage Service) is a cloud-based object storage service that provides developers and IT teams with secure, durable, and scalable storage for their data. It allows users to store and retrieve any amount of data from anywhere on the web, making it easy to build and scale applications, backup and archive data, and analyze data. S3 is designed to provide high availability and durability, with data automatically replicated across multiple availability zones within a region. It also offers a range of features such as versioning, lifecycle policies, and access control to help users manage their data effectively.

Amazon S3's API provides access to a wide range of data types, including:

1. Object data: This includes the actual files stored in S3 buckets, such as images, videos, documents, and other types of files.
2. Metadata: S3 stores metadata about each object, including information such as the object's size, creation date, and last modified date.
3. Access control data: S3 provides access control mechanisms to restrict access to objects in a bucket. The API provides access to information about access control policies and permissions.
4. Bucket data: S3 buckets are containers for objects. The API provides access to information about buckets, such as their names, creation dates, and region.
5. Logging data: S3 can log access requests to objects in a bucket. The API provides access to these logs, which can be used for auditing and compliance purposes.
6. Inventory data: S3 can generate inventory reports that provide information about the objects stored in a bucket. The API provides access to these reports.
7. Metrics data: S3 can generate metrics about the usage of a bucket, such as the number of requests and the amount of data transferred. The API provides access to these metrics.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up S3 to Snowflake Data Cloud as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from S3 to Snowflake Data Cloud and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

Warehouses and Lakes
Warehouses and Lakes

How to load data from S3 to Snowflake destination

Learn how to use Airbyte to synchronize your S3 data into Snowflake destination within minutes.

TL;DR

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps:

  1. set up S3 as a source connector (using Auth, or usually an API key)
  2. set up Snowflake destination as a destination connector
  3. define which data you want to transfer and how frequently

You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud.

This tutorial’s purpose is to show you how.

What is S3

Amazon S3 (Simple Storage Service) is a cloud-based object storage service that provides developers and IT teams with secure, durable, and scalable storage for their data. It allows users to store and retrieve any amount of data from anywhere on the web, making it easy to build and scale applications, backup and archive data, and analyze data. S3 is designed to provide high availability and durability, with data automatically replicated across multiple availability zones within a region. It also offers a range of features such as versioning, lifecycle policies, and access control to help users manage their data effectively.

What is Snowflake destination

A cloud data platform, Snowflake Data Cloud provides a warehouse-as-a-service built specifically for the cloud. The Snowflake platform is designed to empower many types of data workloads, and offers secure, immediate, governed access to a comprehensive network of data. Snowflake’s innovative technology goes above the capabilities of the ordinary database, supplying users all the functionality of database storage, query processing, and cloud services in one package.

Integrate S3 with Snowflake destination in minutes

Try for free now

Prerequisites

  1. A S3 account to transfer your customer data automatically from.
  2. A Snowflake destination account.
  3. An active Airbyte Cloud account, or you can also choose to use Airbyte Open Source locally. You can follow the instructions to set up Airbyte on your system using docker-compose.

Airbyte is an open-source data integration platform that consolidates and streamlines the process of extracting and loading data from multiple data sources to data warehouses. It offers pre-built connectors, including S3 and Snowflake destination, for seamless data migration.

When using Airbyte to move data from S3 to Snowflake destination, it extracts data from S3 using the source connector, converts it into a format Snowflake destination can ingest using the provided schema, and then loads it into Snowflake destination via the destination connector. This allows businesses to leverage their S3 data for advanced analytics and insights within Snowflake destination, simplifying the ETL process and saving significant time and resources.

Step 1: Set up S3 as a source connector

1. Open the Airbyte dashboard and click on "Sources" from the left-hand menu.
2. Click on the "Create Source" button and select "S3" from the list of available connectors.
3. Enter a name for your S3 source and click on "Next".
4. Enter your AWS access key ID and secret access key in the respective fields. You can find these credentials in your AWS account under "Security Credentials".
5. Select the AWS region where your S3 bucket is located from the dropdown menu.
6. Enter the name of your S3 bucket in the "Bucket Name" field.
7. If your S3 bucket is not in the root directory, enter the path to the directory in the "Path Prefix" field.
8. If you want to include only certain files in your data sync, you can enter a file pattern in the "File Pattern" field. For example, "*.csv" will only include CSV files.
9. Click on "Test" to verify your credentials and connection to the S3 bucket.
10. If the test is successful, click on "Create Source" to save your S3 source connector.Once your S3 source connector is set up, you can use it to create a new Airbyte pipeline and sync data from your S3 bucket to your destination of choice.

Step 2: Set up Snowflake destination as a destination connector

1. First, navigate to the Airbyte website and log in to your account.

2. Once you are logged in, click on the "Destinations" tab on the left-hand side of the screen.

3. Scroll down until you find the Snowflake Data Cloud destination connector and click on it.

4. You will be prompted to enter your Snowflake account information, including your account name, username, and password.

5. After entering your account information, click on the "Test" button to ensure that the connection is successful.

6. If the test is successful, click on the "Save" button to save your Snowflake Data Cloud destination connector settings.

7. You can now use the Snowflake Data Cloud destination connector to transfer data from your Airbyte sources to your Snowflake account.

8. To set up a data transfer, navigate to the "Sources" tab on the left-hand side of the screen and select the source you want to transfer data from.

9. Click on the "Create New Connection" button and select the Snowflake Data Cloud destination connector as your destination.

10. Follow the prompts to set up your data transfer, including selecting the tables or data sources you want to transfer and setting up any necessary transformations or mappings.

11. Once you have set up your data transfer, click on the "Run" button to start the transfer process.

Step 3: Set up a connection to sync your S3 data to Snowflake destination

Once you've successfully connected S3 as a data source and Snowflake destination as a destination in Airbyte, you can set up a data pipeline between them with the following steps:

  1. Create a new connection: On the Airbyte dashboard, navigate to the 'Connections' tab and click the '+ New Connection' button.
  2. Choose your source: Select S3 from the dropdown list of your configured sources.
  3. Select your destination: Choose Snowflake destination from the dropdown list of your configured destinations.
  4. Configure your sync: Define the frequency of your data syncs based on your business needs. Airbyte allows both manual and automatic scheduling for your data refreshes.
  5. Select the data to sync: Choose the specific S3 objects you want to import data from towards Snowflake destination. You can sync all data or select specific tables and fields.
  6. Select the sync mode for your streams: Choose between full refreshes or incremental syncs (with deduplication if you want), and this for all streams or at the stream level. Incremental is only available for streams that have a primary cursor.
  7. Test your connection: Click the 'Test Connection' button to make sure that your setup works. If the connection test is successful, save your configuration.
  8. Start the sync: If the test passes, click 'Set Up Connection'. Airbyte will start moving data from S3 to Snowflake destination according to your settings.

Remember, Airbyte keeps your data in sync at the frequency you determine, ensuring your Snowflake destination data warehouse is always up-to-date with your S3 data.

Use Cases to transfer your S3 data to Snowflake destination

Integrating data from S3 to Snowflake destination provides several benefits. Here are a few use cases:

  1. Advanced Analytics: Snowflake destination’s powerful data processing capabilities enable you to perform complex queries and data analysis on your S3 data, extracting insights that wouldn't be possible within S3 alone.
  2. Data Consolidation: If you're using multiple other sources along with S3, syncing to Snowflake destination allows you to centralize your data for a holistic view of your operations, and to set up a change data capture process so you never have any discrepancies in your data again.
  3. Historical Data Analysis: S3 has limits on historical data. Syncing data to Snowflake destination allows for long-term data retention and analysis of historical trends over time.
  4. Data Security and Compliance: Snowflake destination provides robust data security features. Syncing S3 data to Snowflake destination ensures your data is secured and allows for advanced data governance and compliance management.
  5. Scalability: Snowflake destination can handle large volumes of data without affecting performance, providing an ideal solution for growing businesses with expanding S3 data.
  6. Data Science and Machine Learning: By having S3 data in Snowflake destination, you can apply machine learning models to your data for predictive analytics, customer segmentation, and more.
  7. Reporting and Visualization: While S3 provides reporting tools, data visualization tools like Tableau, PowerBI, Looker (Google Data Studio) can connect to Snowflake destination, providing more advanced business intelligence options. If you have a S3 table that needs to be converted to a Snowflake destination table, Airbyte can do that automatically.

Wrapping Up

To summarize, this tutorial has shown you how to:

  1. Configure a S3 account as an Airbyte data source connector.
  2. Configure Snowflake destination as a data destination connector.
  3. Create an Airbyte data pipeline that will automatically be moving data directly from S3 to Snowflake destination after you set a schedule

With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.

We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

Amazon’s Simple Storage Service (Amazon S3) is an object storage service that allows large amounts of data to be efficiently and cost-effectively stored. S3 is used in a wide range of use cases such as data lakes, websites, mobile applications, backup and restore, archiving data, and big data storage. It is possible and likely that your organization may already have a large amount of data stored in S3.

In order for your organization to extract the maximum value from your data integration strategy, it may be beneficial to copy your data from S3 into a purpose-built big data analytics platform such as Snowflake. Data that is moved to Snowflake can then be combined with data from other systems, which will provide your organization with the following benefits:

  • A unified view of data and a single source of truth – achieved by copying data from S3 and other operational systems into Snowflake.
  • Improved analytics capabilities – Snowflake is purpose built for running large analytics jobs.
  • The ability to transform data in a single location – moving data from S3 and other systems into Snowflake allows you to transform and join data from multiple disparate systems.

One of the challenges with some data integration approaches is that creating custom ETL (extract, transform, and load) or ELT (extract, load, and transform) data pipelines to move your data into Snowflake may require dedicated technical capabilities or resources that your organization may not have readily available. Alternatively, Airbyte can be used to  quickly create ETL pipelines from S3 to Snowflake.

What you will learn in this tutorial

This tutorial will show you how to configure Airbyte to ingest CSV data from Amazon S3 to Snowflake. Furthermore, the approach outlined in this tutorial should also be applicable to ingesting Avro, JSONL, or Parquet data from S3 into Snowflake.



{{COMPONENT_CTA}}


Pre-requisites

You will therefore require the following prerequisites to complete this tutorial:

Step 1: Set up an AWS S3 Static file storage

The following steps can be used to setup your AWS S3 file storage:

  1. Sign in to the AWS Management Console and open the Amazon S3 console at https://console.aws.amazon.com/s3/.
  2. Choose Create bucket.
  3. In the Bucket name, enter a DNS-compliant name for your bucket. Make sure to read bucket naming rules.
  4. In Region, choose the AWS Region; choose a Region close to you to minimize latency and costs and address regulatory requirements.
  5. Choose the recommended option for Object Ownership.
  6. Block all public access.
  7. Choose Create bucket.
  8. To access this bucket from Airbyte, you must set up an appropriate IAM policy. Head over to IAM > Policies > Create Policy. Give the group a name and attach a policy with written access to S3.
  9. Once you have created a policy, the next step involves creating a user group & adding a user to that group.
  10. In IAM, pick User groups, then create a group.
  11. Make sure to attach the S3 Policy we just created.
  12. Choose Add a user.
  13. For the AWS Access type, choose the access key - Programmatic access to obtain the access key ID and secret access key; we will need both these keys to set up our Airbyte destination.

For the sake of this tutorial, we have uploaded a CSV file to our S3 bucket. In this tutorial, we will later ingest the data in this file into a snowflake database.

Step 2: Set up a database using Snowflake

If you don’t already have a Snowflake account, you’ll need to pick a Snowflake edition and a cloud provider for your warehouse as part of the account creation process.

The Snowflake dashboard will appear after you log in with a username and password. The worksheet area will be where you’ll run scripts and SQL queries for creating, visualizing, and modifying resources.

For Airbyte to successfully sync data from files hosted in S3, you need to create a data warehouse and a database. Luckily, Airbyte provides a script that lets us do it in a few seconds.

Make sure to update the value of sensitive fields such as the password. Take note of the following values, as you will need them later while setting up Snowflake as an Airbyte destination:


-- set variables (these need to be uppercase)
set airbyte_role = 'AIRBYTE_ROLE';
set airbyte_username = 'AIRBYTE_USER';
set airbyte_warehouse = 'AIRBYTE_WAREHOUSE';
set airbyte_database = 'AIRBYTE_DATABASE';
set airbyte_schema = 'AIRBYTE_SCHEMA';

-- set user password
set airbyte_password = 'password';

You can then  visit the warehouse section to confirm that there is a new warehouse with the name AIRBYTE_WAREHOUSE with the configuration that was specified in the script.

Step 3: Set up an Airbyte S3 Source

In this section you will define an Amazon S3 source connection. To set up a new source, go to the Sources menu in your Airbyte dashboard and choose to create a new source by clicking on the New source button and then fill in the following fields:

  1. The Output Stream Name is the name of the database table that will be created in Snowflake.
  2. A Pattern of files to replicate is a glob pattern of where to look for files. For e.g. to refer to all the files in the bucket use ** as the pattern.  You can learn more about how to construct the correct pattern for complex needs in our Path Patterns docs.
  3. AWS User Access Key ID and AWS Secret Access Key are the values that we obtained in Step 1
  4. If you have a pre-set location for files inside the bucket, then set the Path Prefix to those folders inside the bucket, this helps Airbyte quickly figure out the location of files in case the bucket contains a large amount of data.
  5. For file format, choose CSV from the available options. You can choose to configure various aspects of how Airbyte should read the files like changing the delimiter character to tabs (\t) instead of coma, but we will leave the default settings as is.

  1. Once you are done with the configurations, click on set up source button and wait while Airbyte establishes a connection to your bucket.

Step 4: Set up Airbyte Snowflake destination

To set up a snowflake destination, head over to Destinations in your Airbyte dashboard and choose New destination from the list of available destinations, and pick Snowflake.

Step 5: Set up an S3 to Snowflake Connection

To set up a connection between our S3 bucket and the snowflake database, go to Connections and click on the New Connection button at the top right.

In the Select an existing source section, look for the S3 source you just created & click on Use existing source. Similarly, do the same thing for the destination as well. Once you do that, you should see a screen like this.

As you can see, Airbyte is showing the s3csvdata stream that we set up earlier while configuring our source. Enable this stream by clicking on the toggle button if not already done.

Next, you can (optionally) choose the Full refresh Overwrite option for sync mode. This will resend the entire data set on each sync cycle. The S3 source connector also supports several other sync modes. Once satisfied with your changes, click on Save changes and Airbyte will start to sync your data.

Once the sync is complete, you can head to your Snowflake dashboard. Under Databases look for AIRBYTE_DATABASE > AIRBYTE_SCHEMA > Tables, and you should see a new table named s3csvdata.

As you can notice, Airbyte correctly synced column names from our CSV file. Select the Data Preview tab to check what data was synced.

Airbyte provides syncing of several other file formats including: JSONL, Avro, and Parquet. Building an ELT / data ingest pipeline with these alternate file formats is similar to what we have just demonstrated with CSV.

Wrapping up

This tutorial has shown you how to quickly create a connector to replicate data from S3 to Snowflake.  To do this, the following steps were followed:

  1. Configure static file storage using AWS S3.
  2. Configure a database on Snowflake.
  3. Configure an Airbyte S3 source connector.
  4. Configure an Airbyte Snowflake destination connector.
  5. Create an Airbyte connection that automatically imports files from S3 to a table inside Snowflake.

With Airbyte, the data integration possibilities are endless, and we look forward to seeing you use it! We invite you to join the conversation on our community Slack Channel, participate in discussions on Airbyte’s discourse, or sign up for our newsletter. You should also check out other Airbyte tutorials and Airbyte’s blog!

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

Frequently Asked Questions

What data can you extract from S3?

Amazon S3's API provides access to a wide range of data types, including:

1. Object data: This includes the actual files stored in S3 buckets, such as images, videos, documents, and other types of files.
2. Metadata: S3 stores metadata about each object, including information such as the object's size, creation date, and last modified date.
3. Access control data: S3 provides access control mechanisms to restrict access to objects in a bucket. The API provides access to information about access control policies and permissions.
4. Bucket data: S3 buckets are containers for objects. The API provides access to information about buckets, such as their names, creation dates, and region.
5. Logging data: S3 can log access requests to objects in a bucket. The API provides access to these logs, which can be used for auditing and compliance purposes.
6. Inventory data: S3 can generate inventory reports that provide information about the objects stored in a bucket. The API provides access to these reports.
7. Metrics data: S3 can generate metrics about the usage of a bucket, such as the number of requests and the amount of data transferred. The API provides access to these metrics.

What data can you transfer to Snowflake destination?

You can transfer a wide variety of data to Snowflake destination. This usually includes structured, semi-structured, and unstructured data like transaction records, log files, JSON data, CSV files, and more, allowing robust, scalable data integration and analysis.

What are top ETL tools to transfer data from S3 to Snowflake destination?

The most prominent ETL tools to transfer data from S3 to Snowflake destination include:

  • Airbyte
  • Fivetran
  • Stitch
  • Matillion
  • Talend Data Integration

These tools help in extracting data from S3 and various sources (APIs, databases, and more), transforming it efficiently, and loading it into Snowflake destination and other databases, data warehouses and data lakes, enhancing data management capabilities.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter