Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting your data from Secoda. Access your Secoda workspace and use the built-in export functionality to download your data in a common format such as CSV, JSON, or Parquet. Ensure all necessary data is included and the export is complete.
Set up your Apache Iceberg environment if it is not already configured. This involves installing Apache Iceberg on your data platform, which could be Hadoop, Spark, or any compatible system. Make sure you have the necessary permissions and configurations to create and manage Iceberg tables.
Define the schema for your Iceberg table that matches the structure of your exported data. This includes specifying the data types of each column and any partitioning strategy you wish to use. Use SQL commands or Iceberg API calls to create the table schema within your Iceberg environment.
Move your exported data files to a staging area that your Apache Iceberg environment can access. This could be a distributed file system like HDFS, or an object storage service like Amazon S3. Ensure the data is organized in a way that matches your intended Iceberg table structure.
Use Apache Iceberg APIs or SQL commands to ingest the data from the staging area into the Iceberg table. This may involve reading the data files and writing them into the Iceberg format, ensuring that the table schema and partitioning are respected.
After the data has been ingested, perform a series of validation checks to ensure the data integrity and completeness. This includes querying the Iceberg table to verify that the record count matches the original dataset, and checking for any discrepancies in data types or content.
Finally, optimize your Iceberg table for performance. This can include actions like compacting small files into larger ones, running maintenance commands to update statistics, and ensuring the table is partitioned effectively for your query patterns. Regularly maintain the table to keep it performing efficiently.
By following these steps, you can successfully move data from Secoda to Apache Iceberg without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Seconda stands for searchable company data and its mission is to make the experience of exploring, understanding, and using data.Secoda is the first workspace built for data teams. Secoda combines data dictionary, data catalog, data requests, data docs search, and data management compliance in a delightful experience, always connected to your data stack. Secoda has made it way easier to understand what data we have and how to best make use of it. It's a game-changer.
Secoda's API provides access to a wide range of data types, including:
1. Research papers and publications: The API allows users to search and access research papers and publications from various sources.
2. Data sets: The API provides access to a vast collection of data sets from different domains, including finance, healthcare, and social media.
3. News articles: The API enables users to search and access news articles from various sources, including newspapers, magazines, and online news portals.
4. Patents: The API provides access to patent data from various sources, including the United States Patent and Trademark Office (USPTO) and the European Patent Office (EPO).
5. Company information: The API allows users to search and access information about companies, including financial data, news articles, and company profiles.
6. Social media data: The API provides access to social media data from various platforms, including Twitter, Facebook, and LinkedIn.
7. Government data: The API enables users to search and access government data from various sources, including the United States Census Bureau and the World Bank.
Overall, Secoda's API provides a comprehensive set of data types that can be used for various applications, including research, analysis, and decision-making.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: