

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin, you need to access the SendGrid API. Sign in to your SendGrid account and navigate to the API Key section. Create an API Key with the necessary permissions to access the data you want to transfer, such as email activity or statistics.
Use the SendGrid API to extract the necessary data. You can make HTTP GET requests to the relevant endpoints (e.g., /messages, /stats) using tools like `curl` or a programming language with HTTP client capabilities (such as Python's `requests` library). Ensure you authenticate using your API Key by including it in the request headers.
Once you have retrieved the data, parse the JSON response. Most programming languages have built-in libraries to handle JSON data (e.g., Python's `json` module). Structure the data into a format suitable for insertion into your PostgreSQL database, such as a list of dictionaries or a DataFrame.
Ensure that your PostgreSQL database is set up and accessible. Create a table with the appropriate schema to match the structure of the data you are migrating. Define the columns and data types according to the data you plan to import (e.g., VARCHAR for strings, INTEGER for numbers).
Use a PostgreSQL client library to connect to your database. In Python, for example, you can use the `psycopg2` library. Establish a connection by providing the necessary credentials (host, port, database name, user, and password).
Construct SQL `INSERT` statements or use prepared statements to insert the structured data into your PostgreSQL table. Loop through your data structure and execute the SQL commands within a transaction to ensure data integrity. Handle any exceptions that may occur during the insertion process.
After inserting the data, perform checks to verify that the data in your PostgreSQL database matches the data retrieved from SendGrid. Use SQL queries to count rows, check for duplicates, or validate data types. Once verified, close your database connection and clean up any temporary files or data structures used during the process.
By following these steps, you can effectively transfer data from SendGrid to a PostgreSQL database without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
SendGrid is a customer communication platform. Cloud-based and scalable, it easily powers more than 30 billions emails every month for both web and mobile customers. Extremely reliable and efficient, it services both innovative and traditional businesses such as Airbnb, HubSpot, Pandora, Uber, Spotify, FourSquare, Costco, and Intuit.
SendGrid's API provides access to a wide range of data related to email delivery and engagement. The following are the categories of data that can be accessed through SendGrid's API:
1. Email delivery data: This includes information about the delivery status of emails, such as whether they were delivered successfully or bounced.
2. Engagement data: This includes data related to how recipients interact with emails, such as open rates, click-through rates, and unsubscribe rates.
3. Email content data: This includes information about the content of emails, such as subject lines, body text, and attachments.
4. Contact data: This includes information about the recipients of emails, such as email addresses, names, and demographic information.
5. Account data: This includes information about the SendGrid account, such as billing information, API keys, and account settings.
6. Event data: This includes information about events related to email delivery and engagement, such as when an email was sent, opened, or clicked.
Overall, SendGrid's API provides a comprehensive set of data that can be used to analyze and optimize email campaigns for better engagement and delivery.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: