


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by familiarizing yourself with Sentry's data export features. Sentry provides APIs that allow you to access and extract data. Review the Sentry API documentation to understand the endpoints available for fetching the data you need, such as issues, events, or project data.
Access Sentry's API by creating an authentication token. Navigate to your Sentry account settings, locate the API section, and generate a new API token. Ensure you assign the correct permissions to this token to allow reading the necessary data from your Sentry account.
Write a script in a programming language of your choice (e.g., Python, JavaScript) that uses the Sentry API to fetch the desired data. Utilize the requests library in Python or fetch in JavaScript to make HTTP GET requests to the Sentry API endpoints. Ensure your script includes the authentication token in the request headers.
Once you have successfully fetched data from Sentry, parse the JSON response to extract the relevant information. Use built-in JSON parsers available in most programming languages to convert the JSON string into a native data structure (e.g., dictionaries in Python or objects in JavaScript).
If necessary, transform the retrieved Sentry data to match your desired output format. This might include filtering specific fields, renaming keys, or restructuring the data. Ensure that the transformed data maintains the integrity and necessary information from the original dataset.
After transforming the data, write it to a JSON file. Use file-handling capabilities in your chosen programming language to open a file in write mode and serialize the data as JSON. Ensure your script handles potential errors, such as file write permissions or disk space issues.
To keep your JSON file updated with the latest Sentry data, schedule your script to run at regular intervals. Use cron jobs on Unix-based systems or Task Scheduler on Windows to automate the execution of your script. Set an appropriate frequency based on how often you need the data updated.
By following these steps, you can efficiently extract data from Sentry and store it in a JSON file without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Sentry is a cloud-based error monitoring platform that helps developers identify and fix issues in their applications. It provides real-time alerts and detailed error reports, allowing developers to quickly diagnose and resolve issues before they impact users. Sentry supports a wide range of programming languages and frameworks, and integrates with popular development tools like GitHub, Jira, and Slack. With features like release tracking, performance monitoring, and customizable dashboards, Sentry helps teams improve the quality and reliability of their software. Overall, Sentry is a powerful tool for any development team looking to streamline their error monitoring and debugging processes.
Sentry's API provides access to a wide range of data related to application performance monitoring and error tracking. The following are the categories of data that can be accessed through Sentry's API:
1. Events: This includes information about errors, crashes, and other events that occur within an application.
2. Issues: This includes details about specific issues that have been identified within an application, including the number of occurrences, the severity of the issue, and any associated metadata.
3. Projects: This includes information about the projects being monitored by Sentry, including project settings, integrations, and other configuration details.
4. Users: This includes information about the users who are interacting with an application, including their IP addresses, browser information, and other relevant data.
5. Releases: This includes information about the releases of an application, including version numbers, release dates, and associated metadata.
6. Performance: This includes data related to the performance of an application, including response times, error rates, and other metrics.
Overall, Sentry's API provides a comprehensive set of data that can be used to monitor and optimize the performance of an application, as well as to identify and resolve errors and other issues.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: