

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To start, log into your Shopify admin panel. Navigate to the section that contains the data you wish to export (for example, Products, Customers, or Orders). Use the export function provided by Shopify to download the data as a CSV file. Make sure to choose the most comprehensive export options to include all necessary fields.
Open the exported CSV file in a spreadsheet application like Microsoft Excel. Review the data to ensure completeness and accuracy. Remove any unnecessary columns or rows and make adjustments to the data format if needed to ensure compatibility with SQL Server data types.
Access your MS SQL Server instance using a tool like SQL Server Management Studio (SSMS). Create a new database or select an existing one where you want to import the Shopify data. Define the table structures that match the data schema from the Shopify CSV file, ensuring the data types in SQL Server align with those in the CSV file.
Save the cleaned and reviewed CSV file in a format that SQL Server can readily import. Ensure that the CSV file is formatted correctly with consistent delimiters, no stray commas in text strings, and proper handling of special characters. If your data includes complex types, consider adjustments like date format standardization.
In SQL Server Management Studio, launch the Import and Export Data Wizard. This tool guides you through the process of importing data from your CSV file into your SQL Server database. Select the CSV file as your data source and match it to your target SQL Server tables. Use the mapping features to ensure each CSV column is correctly aligned with the SQL table columns.
Follow through the wizard to execute the data import process. Monitor the progress, and watch for any errors or warnings that might indicate issues with the data format or structure. If necessary, adjust your table schemas or CSV file and retry the import to address any problems encountered.
After the import process is completed, run queries in SQL Server to verify that the data has been imported correctly. Check for data integrity and ensure that all expected records are present and accurate. Perform sample data checks and run queries that simulate the use cases for which this data will be utilized in your applications.
By following these steps, you can move data from Shopify to MS SQL Server efficiently and effectively without relying on third-party tools.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Shopify is a cloud-based commerce platform focused on small- to medium-sized businesses and designed for ultimate scalability and reliability. Its software allows merchants to set up, design and manage businesses easily across multi-sales channels: mobile, web, social media, marketplaces, pop-up shops, and even brick-and-mortar stores. It offers a plethora of services including customer engagement, payments, marketing, and shipping tools to provide small merchants with the ability to run an online store simply and efficiently.
Shopify's API provides access to a wide range of data related to an online store's operations. The following are the categories of data that can be accessed through Shopify's API:
1. Products: Information about the products available in the store, including their titles, descriptions, prices, images, and variants.
2. Orders: Details about the orders placed by customers, including the customer's name, shipping address, payment information, and order status.
3. Customers: Information about the customers who have created accounts on the store, including their names, email addresses, and order history.
4. Collections: Details about the collections of products that have been created in the store, including their titles, descriptions, and products included.
5. Discounts: Information about the discounts that have been created in the store, including their codes, types, and amounts.
6. Fulfillment: Details about the fulfillment of orders, including the status of each order and the tracking information for shipped orders.
7. Analytics: Data related to the store's performance, including sales reports, traffic reports, and conversion rates.
8. Storefront: Information about the store's design and layout, including the theme, templates, and customizations.
Overall, Shopify's API provides access to a comprehensive set of data that can be used to manage and optimize an online store's operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: