

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To access Strava's API, you need to register your application. Go to the Strava Developer Portal, log in with your Strava account, and create a new application. Note down your Client ID and Client Secret, as these will be needed for API authentication.
Use the OAuth 2.0 protocol to obtain an access token. Direct your browser to Strava's authorization URL with your Client ID, redirect URI, and requested scopes. Once the user authorizes access, you'll receive a code in the redirect URI. Exchange this code for an access token using a POST request to Strava's token endpoint, providing your Client ID, Client Secret, and the received code.
Ensure that your MSSQL database is set up and accessible. Create a new database or select an existing one where you want to store the Strava data. Define the necessary tables and fields to match the structure of the data you plan to import from Strava, such as activity ID, type, distance, duration, etc.
Write a script in your preferred programming language (such as Python or Node.js) to fetch data from Strava using the access token. Use the Strava API endpoints to retrieve the desired data, such as activities or segments. Handle pagination if necessary to ensure you retrieve all data.
Once you have fetched the data, transform it into a format compatible with your MSSQL database. This may involve converting data types, handling null values, and structuring the data to match your MSSQL tables. Use data transformation libraries or write custom functions to facilitate this process.
Establish a connection to your MSSQL database using a library such as pyodbc for Python or the appropriate library for your chosen language. Write SQL queries to insert the transformed data into your database tables. Ensure that you handle any potential errors, such as duplicate entries or constraint violations, by implementing appropriate error-handling logic.
To keep your MSSQL database updated with the latest data from Strava, automate the entire process. Schedule your script to run at regular intervals using a task scheduler like cron on Unix-based systems or Task Scheduler on Windows. This ensures that your data is consistently synchronized without manual intervention.
By following these steps, you can effectively move data from Strava to an MSSQL destination without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Strava is a late-stage venture company and fitness-focused social app for tracking exercise. It is one of the most popular fitness apps for those with a competitive edge. Strava is an online network where runners and cyclists can record their activities, compare performance, and compete with their community. Strava is a worldwide community of millions of runners, cyclists and triathletes, united by the fellowship of sport. Strava is a free digital service available through both mobile applications and the web.
Strava's API provides access to a wide range of data related to user activities on the platform. The following are the categories of data that can be accessed through Strava's API:
1. Athlete data: This includes information about the user's profile, such as name, age, gender, weight, and location.
2. Activity data: This includes information about the user's activities, such as distance, duration, speed, elevation, and heart rate.
3. Segment data: This includes information about the user's performance on specific segments, such as the segment name, distance, elevation, and leaderboard rankings.
4. Route data: This includes information about the user's created routes, such as the route name, distance, elevation, and map coordinates.
5. Club data: This includes information about the user's clubs, such as the club name, description, and member list.
6. Gear data: This includes information about the user's gear, such as the gear name, type, and usage statistics.
7. Authorization data: This includes information about the user's authorization status, such as access tokens and refresh tokens.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: