Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from Trello. Log into your Trello account, navigate to the board you wish to export, click on the "Show Menu" button, then "More," and select "Print and Export." Choose the JSON format for the export as it will be easier to manipulate programmatically.
Prepare a local environment to handle the data processing. Ensure you have a code editor installed (like VSCode or Sublime Text) and set up a runtime, such as Node.js or Python, depending on your preference. This environment will be used to parse and format your data for Typesense.
Write a script in your chosen language to parse the Trello JSON file. This script should extract the relevant details from the JSON structure, such as card titles, descriptions, labels, and any other fields you wish to move to Typesense. Structure this data into a format suitable for Typesense, typically a JSON array of objects.
If you haven't already, install and configure Typesense on your local machine or server. Follow the official Typesense documentation to get the server running. Ensure that you have created the necessary schema that matches the attributes of the data you extracted from Trello.
With the parsed Trello data, transform it to match the schema required by Typesense. This involves ensuring that data types and field names are consistent with what your Typesense collection expects. This transformation can be done within the same script used for parsing.
Utilize the Typesense API to import your transformed data. Write a script to send HTTP POST requests to your Typesense server's `documents` endpoint, using the API key for authentication. Loop through your data array and push each item into the Typesense collection.
After importing the data, verify its integrity by querying your Typesense collection. Use the Typesense dashboard or command-line queries to check that all records have been imported correctly and that the data is accessible as expected. Make any adjustments necessary if discrepancies are found.
By following these steps, you can manually move data from Trello to Typesense without relying on third-party tools, though it requires a fair amount of manual setup and scripting.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Trello is a web-based, Kanban-style, list-making application and is a subsidiary of Atlassian. Originally created by Fog Creek Software in 2011, it was spun out to form the basis of a separate company in 2014 and later sold to Atlassian in January 2017. The company is based in New York City.
Trello's API provides access to a wide range of data related to boards, cards, lists, members, and organizations. Here are the categories of data that Trello's API gives access to:
- Boards: Information about boards, including their name, description, URL, and members.
- Cards: Details about individual cards, such as their name, description, due date, and attachments.
- Lists: Information about lists, including their name, position, and cards.
- Members: Data related to members, such as their name, email address, and avatar URL.
- Organizations: Details about organizations, including their name, description, and members.
In addition to these categories, Trello's API also provides access to data related to actions, checklists, labels, and more. With this data, developers can build custom integrations and applications that interact with Trello in a variety of ways. For example, they can create custom reports, automate workflows, or build dashboards that display Trello data in real-time.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





