Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the necessary data from Zendesk Talk. Access your Zendesk Talk interface, navigate to the "Admin" section, and find the "Reports" or "Analytics" section. Use the built-in export functionality to download your call data in a CSV or JSON format. This export will serve as the raw data source for your transfer process.
Set up a local environment where you will process the exported data. Ensure you have a system with Python or another programming language installed that can handle data transformation. Install necessary libraries such as `pandas` for data manipulation, and ensure your system can connect to your Apache Iceberg setup.
Use a script to transform the exported Zendesk Talk data into a format compatible with Apache Iceberg. If using Python, load the data using `pandas` and perform any necessary data cleaning and transformation to match the schema required by Iceberg. Ensure the data types and structures are consistent with your Iceberg table definitions.
On your Apache Iceberg setup, create a table that matches the schema of your transformed data. Use SQL or Iceberg's API to define the table, specifying columns, data types, and any partitioning or indexing requirements. This step ensures that the data will be ingested correctly and efficiently.
Convert the transformed data into a format that Apache Iceberg can directly ingest, such as Parquet or Avro. Use your script to write the data into these files, ensuring that the directory structure aligns with your Iceberg table's file layout. This often involves batching data into chunks suitable for Iceberg's optimized storage.
Move the formatted data files to the designated location in your Apache Iceberg storage setup. If using a Hadoop-compatible file system, copy the files into the appropriate directory. Ensure that the Iceberg table metadata is updated to include the new data files, which may involve using Iceberg's API or SQL commands to refresh the table state.
After ingestion, verify that the data in Apache Iceberg matches the original Zendesk Talk data. Use SQL queries or Iceberg's API to validate the row counts, data types, and key metrics. Check for any discrepancies or errors, and adjust your transformation process as necessary to ensure complete and accurate data transfer.
By following these steps, you will be able to move data from Zendesk Talk to Apache Iceberg without relying on third-party connectors or integrations, while ensuring data integrity and compatibility.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Zendesk Talk is a cloud-based Voice over Internet Protocol (VoIP) system that enables phone communication for customer support teams from within the Zendesk support ticketing solution. Yet another way Zendesk successfully heightens the customer experience, Zendesk Talk offers the capability to access phone numbers in more than 40 countries, making global communication personal.
Zendesk Talk's API provides access to various types of data related to customer support and communication. The categories of data that can be accessed through the API are:
1. Call data: This includes information about incoming and outgoing calls, such as call duration, call recordings, and call transcripts.
2. Agent data: This includes information about agents, such as their availability, status, and performance metrics.
3. Ticket data: This includes information about support tickets, such as ticket status, priority, and customer information.
4. Voicemail data: This includes information about voicemails, such as voicemail transcripts and recordings.
5. Queue data: This includes information about call queues, such as queue status, wait times, and queue metrics.
6. Call routing data: This includes information about call routing, such as routing rules, routing history, and routing performance metrics.
7. IVR data: This includes information about IVR (Interactive Voice Response) systems, such as IVR menus, IVR prompts, and IVR performance metrics.
Overall, Zendesk Talk's API provides a comprehensive set of data that can be used to analyze and improve customer support and communication processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





