Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you wish to transfer from Zoho CRM. Log in to your Zoho CRM account, navigate to the module containing the data (e.g., Leads, Contacts), and use the 'Export' feature. Typically, you can export data in CSV format, which is suitable for further processing.
Once you have the exported CSV file, review and clean the data as necessary. Ensure that the CSV file is properly formatted and contains only the fields you want to import into Typesense. Remove any unnecessary columns and check for data consistency and accuracy.
If you haven’t already set up Typesense, download and install it on your server or local machine. Follow the official Typesense [installation guide](https://typesense.org/docs/guide/install-typesense.html) to configure it. Ensure that Typesense is running and accessible.
Define a schema for the Typesense collection that will store your data. This involves specifying the fields and their data types that align with the structure of your CSV file. Use the Typesense API to create a new collection with this schema. For example, you can define fields like `name`, `email`, `phone`, etc.
Develop a script in a programming language of your choice (e.g., Python, JavaScript) to read the CSV file and import the data into Typesense. Use Typesense's API client libraries for the chosen language to interact with the Typesense server. The script should read each row of the CSV file, convert it into a JSON object, and index it in the Typesense collection.
Run the import script to transfer data from the CSV file to Typesense. Monitor the process for any errors or issues that may arise. If the dataset is large, consider implementing error handling and logging within your script to track progress and troubleshoot any problems.
After the import script completes, verify that the data has been correctly imported into Typesense. Use the Typesense search API to query the collection and ensure that all records are present and searchable. Additionally, check that the data fields match the expected schema and content.
This guide provides a practical, hands-on approach to moving data from Zoho CRM to Typesense without relying on third-party connectors. Adjust the steps based on the specific requirements and constraints of your setup.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Zoho CRM is a comprehensive cloud-based customer relationship management platform designed to help businesses of all sizes streamline their sales, marketing, and customer service operations. It offers a wide range of features, including lead and contact management, sales forecasting, automated workflow creation, and real-time reporting and analytics. Zoho CRM's intuitive interface and customizable modules allow teams to tailor the platform to their specific business needs. It also integrates seamlessly with other Zoho apps and marketing automation tools, enabling a unified view of customer data across multiple touchpoints. With its robust capabilities, scalability, and affordable pricing plans, Zoho CRM empowers businesses to optimize their customer interactions, enhance productivity, and drive growth.
Zoho CRM's API provides access to a wide range of data related to customer relationship management. The following are the categories of data that can be accessed through Zoho CRM's API:
1. Contacts: This includes information about individual contacts such as name, email address, phone number, and job title.
2. Accounts: This includes information about companies or organizations such as name, address, and industry.
3. Leads: This includes information about potential customers who have shown interest in a product or service.
4. Deals: This includes information about sales opportunities, including the deal amount, stage, and probability of closing.
5. Activities: This includes information about tasks, events, and calls related to a contact, account, or deal.
6. Notes: This includes information about notes and comments related to a contact, account, or deal.
7. Custom modules: This includes information about custom modules that have been created in Zoho CRM, such as project management or inventory management.
Overall, Zoho CRM's API provides access to a comprehensive set of data that can be used to manage customer relationships and improve business processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





