

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data from Amplitude. Navigate to the Amplitude dashboard, go to the data section, and use the export feature to download the data you need. Amplitude typically allows you to export data in CSV or JSON formats. Choose the format that best suits your needs.
If you haven't already, create an AWS account. Once logged in, navigate to the S3 service and create a new bucket. Give your bucket a unique name and configure the necessary permissions and settings. Ensure that the bucket is set to the correct region and that it has the appropriate access controls.
To transfer data to S3, install the AWS Command Line Interface (CLI) on your local machine. This tool will allow you to interact with AWS services directly from your command line. Download and install the AWS CLI from the official AWS website, and follow the installation instructions for your operating system.
After installing the AWS CLI, you need to configure it with your AWS credentials. Run the `aws configure` command and input your AWS Access Key ID, Secret Access Key, default region name, and output format. This will allow the CLI to authenticate your requests to AWS services.
Ensure that the data exported from Amplitude is in the desired format and structure. If necessary, clean or transform the data to meet your requirements. You can use tools like Python, Excel, or any other data manipulation tool to organize the data before uploading.
Use the AWS CLI to upload your data files to the S3 bucket. Navigate to the directory containing your data files and use the `aws s3 cp` command to copy files to the bucket. For example, run `aws s3 cp yourfile.csv s3://your-bucket-name/` to upload a file. Ensure that the file paths and bucket names are correct.
After uploading, verify that the data has been successfully transferred to your S3 bucket. You can do this by logging into the AWS Management Console, navigating to the S3 service, and checking the contents of your bucket. Ensure that all files are present and accessible. This step ensures data integrity and confirms a successful transfer.
By following these steps, you can efficiently move data from Amplitude to S3 using only AWS's built-in tools and features, without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Amplitude is a cross-platform product intelligence solution that helps companies accelerate growth by leveraging customer data to build optimum product experiences. Advertised as the digital optimization system that “helps companies build better products,” it enables companies to make informed decisions by showing how a company’s digital products drive business. Amplitude employs a proprietary Amplitude Behavioral Graph to show customers the impact of various combinations of features and actions on business outcomes.
Amplitude's API provides access to a wide range of data related to user behavior and engagement on digital platforms. The following are the categories of data that can be accessed through Amplitude's API:
1. User data: This includes information about individual users such as their demographics, location, and device type.
2. Event data: This includes data related to user actions such as clicks, page views, and purchases.
3. Session data: This includes information about user sessions such as the duration of the session and the number of events that occurred during the session.
4. Funnel data: This includes data related to user behavior in a specific sequence of events, such as a checkout funnel.
5. Retention data: This includes data related to user retention, such as the percentage of users who return to the platform after a certain period of time.
6. Revenue data: This includes data related to revenue generated by the platform, such as the total revenue and revenue per user.
7. Cohort data: This includes data related to groups of users who share a common characteristic, such as the date they signed up for the platform.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: