How to load data from AppsFlyer to Oracle

Learn how to use Airbyte to synchronize your AppsFlyer data into Oracle within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a AppsFlyer connector in Airbyte

Connect to AppsFlyer or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Oracle for your extracted AppsFlyer data

Select Oracle where you want to import data from your AppsFlyer source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the AppsFlyer to Oracle in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner

Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot

Chase Zieman

Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more

Rupak Patel

Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync AppsFlyer to Oracle Manually

Begin by accessing AppsFlyer's Data Export API. You will need to authenticate using your AppsFlyer API key. The API allows you to extract raw data in CSV format. Review the API documentation to understand the available endpoints and parameters needed to fetch the data you require, such as attribution data or in-app event data.

Create a local script or application in a programming language of your choice (e.g., Python, Java) to automate data retrieval from AppsFlyer. Use libraries such as `requests` in Python to make HTTP requests to the AppsFlyer API endpoints. Ensure your script handles authentication and can download the CSV files to a designated local directory.

Once the CSV files are downloaded, parse them using a suitable library (e.g., `pandas` in Python) to read and process the data. Clean the data by handling any missing values, correcting data types, and filtering out unnecessary information. This step ensures your data is in a suitable format for insertion into the Oracle database.

Set up a connection to your Oracle database using an appropriate database client or library. For example, in Python, you can use `cx_Oracle` to interact with Oracle databases. Ensure you have the necessary credentials and permissions to connect and perform insert operations on the target database.

Before inserting data, define the schema of the target tables in your Oracle database. Create tables that match the structure of the data you extracted from AppsFlyer. Use SQL commands to define the tables, specifying data types and constraints that align with the data structure.

Utilize your database connection to insert the parsed and cleaned data from the CSV files into the Oracle database. Write SQL `INSERT` statements or use batch processing to efficiently upload large datasets. Ensure you handle errors and exceptions during the insertion process to maintain data integrity.

To keep your Oracle database updated with the latest data from AppsFlyer, automate the entire process using scheduling tools like `cron` on Unix-based systems or Task Scheduler on Windows. Schedule the script to run at regular intervals, ensuring timely data updates. Make sure to include logging and error notification mechanisms for monitoring the data transfer process.

By following these steps, you can effectively transfer data from AppsFlyer to an Oracle database without relying on third-party connectors or integrations.

How to Sync AppsFlyer to Oracle Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

AppsFlyer is a mobile attribution and marketing analytics platform that helps businesses measure and optimize their mobile app marketing campaigns. It provides real-time data and insights on user acquisition, engagement, retention, and revenue, allowing businesses to make data-driven decisions to improve their app performance and ROI. AppsFlyer's platform integrates with over 5,000 partners, including ad networks, social media platforms, and analytics tools, to provide a comprehensive view of the entire mobile app marketing ecosystem. With its advanced fraud protection and privacy compliance features, AppsFlyer ensures that businesses can trust their data and protect their users' privacy.

AppsFlyer's API provides access to a wide range of data related to mobile app marketing and user engagement. The following are the categories of data that can be accessed through the API:
1. Attribution data: This includes information about the source of app installs, such as the ad network, campaign, and creative.
2. In-app events data: This includes data about user actions within the app, such as purchases, registrations, and other custom events.
3. Retargeting data: This includes data about users who have engaged with the app in the past and can be targeted with specific campaigns.
4. Audience data: This includes data about the characteristics of app users, such as demographics, interests, and behaviors.
5. Ad revenue data: This includes data about the revenue generated by ads within the app, such as impressions, clicks, and conversions.
6. Fraud prevention data: This includes data about potential fraudulent activity, such as fake installs or clicks.
7. Raw data: This includes all of the above data in its raw form, allowing for custom analysis and reporting.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up AppsFlyer to Oracle DB as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from AppsFlyer to Oracle DB and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter