

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by setting up AWS CloudTrail to deliver its logs to an Amazon S3 bucket. This can be done via the AWS Management Console. Go to the CloudTrail service, create a trail if you haven't already, and specify the S3 bucket where you want the logs to be delivered. Ensure that the permissions for the S3 bucket are correctly configured to allow CloudTrail to write logs to it.
Download and install the AWS Command Line Interface (CLI) on your local machine. The AWS CLI will be used to interact with your AWS resources directly from the command line. Follow the installation instructions available on the AWS CLI documentation page for your operating system.
Configure your AWS CLI with the necessary credentials to access your AWS resources. Run `aws configure` in your terminal and input your AWS Access Key ID, Secret Access Key, default region, and output format. These credentials should have permissions to read from the S3 bucket where CloudTrail logs are stored.
Use the AWS CLI to download the CloudTrail logs from your S3 bucket to your local machine. Use a command like `aws s3 cp s3://your-bucket-name/path-to-logs/ ./local-directory/ --recursive` to recursively copy all the logs from the specified S3 path to a local directory.
Download and install DuckDB on your local machine. DuckDB is an in-process SQL OLAP database management system, which can be installed using package managers like `pip` for Python or directly from its release binaries. Ensure DuckDB is properly installed by running a simple query from the DuckDB CLI to verify functionality.
Use DuckDB�s built-in functions to load the downloaded CloudTrail logs into DuckDB. First, start a DuckDB session and create a table schema that matches the structure of your CloudTrail JSON logs. Then, use the `read_json_auto` function in DuckDB to read and import the data. For example, you can execute a query like `CREATE TABLE cloudtrail_logs AS SELECT * FROM read_json_auto('local-directory/path-to-log-file.json')`.
Once the data is loaded into DuckDB, you can run SQL queries to analyze your CloudTrail logs. Use DuckDB�s SQL capabilities to filter, aggregate, and investigate the log data to gain insights into your AWS account activity. DuckDB provides a robust SQL interface that allows for complex queries and data manipulations directly on your imported data.
By following these steps, you can effectively transfer and analyze your AWS CloudTrail data in DuckDB without requiring third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
AWS CloudTrail is a web service developed to simplify and provide assistance with AWS accounts. Enabling compliance, governance, and operational and risk auditing, it allows users to monitor, log, and document AWS account-related activity in an easily searchable format. With its comprehensive account event history function, CloudTrail helps users analyze and troubleshoot security and operational issues, detect unusual account activity, and much more by increasing visibility into customers’ user and resource activity.
AWS CloudTrail provides access to a wide range of data related to AWS account activity and resource usage. The following are the categories of data that can be accessed through the API:
1. Event history: This includes information about all the events that have occurred in an AWS account, such as API calls, console sign-ins, and resource changes.
2. Resource activity: This category includes data related to the usage of AWS resources, such as EC2 instances, S3 buckets, and RDS databases.
3. User activity: This category includes data related to user activity in an AWS account, such as user sign-ins, password changes, and access key usage.
4. Security analysis: This category includes data related to security events in an AWS account, such as failed login attempts, unauthorized access attempts, and changes to security groups.
5. Compliance auditing: This category includes data related to compliance auditing in an AWS account, such as changes to IAM policies, CloudTrail configuration changes, and VPC network changes.
Overall, the AWS CloudTrail API provides a comprehensive view of AWS account activity and resource usage, making it a valuable tool for monitoring and managing AWS environments.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: