Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by obtaining access to the BambooHR API. You will need your BambooHR domain and an API key. Log into your BambooHR account, navigate to the API settings, and generate an API key. This key will allow you to authenticate and interact with BambooHR"s API to extract data.
Determine which data you need to move from BambooHR to Google Pub/Sub. BambooHR"s API documentation will help you identify available endpoints and the structure of the data. Common data types might include employee information, time-off requests, or custom reports.
Write a script using a programming language like Python, Node.js, or Ruby to make HTTP GET requests to BambooHR"s API. Use the API key for authentication. This script should extract the desired data in JSON format. Ensure it handles pagination and rate limits imposed by the API.
Once you have the data, format it appropriately for Google Pub/Sub. Google Pub/Sub expects messages to be in a JSON format that can be easily serialized. Ensure each piece of data you plan to publish fits within this format and adheres to size limits (maximum 10 MB per message).
Log into your Google Cloud Platform account and create a new project if you don"t have one already. Enable the Google Pub/Sub API for your project. This will allow you to create topics and publish messages to them.
In your GCP project, create a new Pub/Sub topic. This topic will serve as the endpoint to which you publish data from BambooHR. Make note of the topic name, as you will need it in your script to specify where to send the data.
Enhance your script to authenticate with Google Cloud using service account credentials. Use the Google Cloud client library for your chosen programming language to publish messages to the Pub/Sub topic. The script should handle authentication, create a publisher client, and send the formatted data to the topic. Test the script to ensure data is correctly published.
By following these steps, you will successfully move data from BambooHR to Google Pub/Sub without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
BambooHR is a cloud-based human resources software that helps small and medium-sized businesses manage their HR processes. It offers a range of features including applicant tracking, onboarding, time-off tracking, performance management, and reporting. The software is designed to streamline HR tasks, reduce paperwork, and improve communication between HR and employees. BambooHR also provides a mobile app for employees to access their HR information on-the-go. The software is user-friendly and customizable, allowing businesses to tailor it to their specific needs. Overall, BambooHR aims to simplify HR management and improve the employee experience.
BambooHR's API provides access to a wide range of HR-related data, including:
- Employee data: This includes information about individual employees, such as their name, job title, department, and contact details.
- Time off data: This includes information about employees' time off requests, including the type of leave requested, the dates requested, and the status of the request.
- Benefits data: This includes information about employees' benefits packages, such as their health insurance coverage, retirement plans, and other perks.
- Payroll data: This includes information about employees' compensation, such as their salary, bonuses, and other forms of payment.
- Performance data: This includes information about employees' performance reviews, goals, and other metrics related to their job performance.
- Recruitment data: This includes information about job openings, candidates, and the hiring process.
Overall, BambooHR's API provides a comprehensive set of data that can be used to manage and optimize various aspects of HR operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





