Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before you begin, familiarize yourself with the Breezometer API documentation. Identify the endpoints you need to access for the specific data you want to transfer. Note any required API keys or authentication processes.
Ensure you have an active Breezometer API key. This is essential for authenticating your requests. Test your API access using a tool like Postman or curl to ensure you can retrieve the necessary data.
You will need Python to script the data retrieval and insertion process. Install the `requests` library for handling HTTP requests and `pymysql` for interacting with MySQL:
 ```bash
 pip install requests pymysql
 ```
Write a Python script to send a GET request to the Breezometer API endpoint. Use the `requests` library to handle the HTTP request and parse the JSON response. Here’s a basic example:
 ```python
 import requests
 api_key = 'YOUR_API_KEY'
 url = f'https://api.breezometer.com/air-quality/v2/current-conditions?lat=LATITUDE&lon=LONGITUDE&key={api_key}'
 response = requests.get(url)
 data = response.json()
 ```
Set up your MySQL database and create necessary tables to store the Breezometer data. Determine the schema based on the JSON structure you receive from the API. Use a MySQL client or the command line to create the table:
 ```sql
 CREATE TABLE air_quality (
 id INT AUTO_INCREMENT PRIMARY KEY,
 datetime DATETIME,
 aqi INT,
 category VARCHAR(255)
 );
 ```
Extend your Python script to insert the fetched data into your MySQL database. Use the `pymysql` library to establish a connection and execute SQL insert statements:
 ```python
 import pymysql
 # Establish a database connection
 connection = pymysql.connect(host='localhost',
 user='your_username',
 password='your_password',
 database='your_database')
 try:
 with connection.cursor() as cursor:
 # Insert data into the database
 sql = "INSERT INTO air_quality (datetime, aqi, category) VALUES (%s, %s, %s)"
 cursor.execute(sql, (data['data']['datetime'], data['data']['indexes']['baqi']['aqi'], data['data']['indexes']['baqi']['category']))
 
 connection.commit()
 finally:
 connection.close()
 ```
To ensure the data is regularly updated, automate the script using a scheduler like cron on Linux or Task Scheduler on Windows. Set it to run at an interval that suits your data update needs, such as every hour or daily.
By following these steps, you can efficiently transfer data from Breezometer to a MySQL database without relying on third-party connectors or integrations. Adjust the script and database schema as needed to match your specific data requirements.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
BreezoMeter unites big data and machine learning technology to provide intuitive, personalized information on air quality and pollen levels to companies and consumers around the world. BreezoMeter provides personalized air quality & pollen data as well as active fire alerts with worldwide coverage & accuracy down to the street level. BreezoMeter uses AI and machine learning to collect and understand data from multiple sources, including more than 47,000 sensors worldwide. Breezometer offers environmental intelligence solutions that enables businesses to lessen exposure to environmental hazards.
Breezometer's API provides access to a wide range of environmental data related to air quality. The following are the categories of data that can be accessed through the API:
1. Air Quality Index (AQI) - This is a measure of the overall air quality in a specific location.  
2. Pollutants - The API provides data on various pollutants such as nitrogen dioxide, sulfur dioxide, ozone, and particulate matter.  
3. Weather - The API provides real-time weather data such as temperature, humidity, wind speed, and direction.  
4. Pollen - The API provides data on pollen levels in the air, which can be useful for people with allergies.  
5. UV Index - The API provides data on the level of ultraviolet radiation in a specific location.  
6. Health Recommendations - The API provides health recommendations based on the air quality data, such as avoiding outdoor activities or wearing a mask.  
7. Historical Data - The API provides access to historical air quality data for a specific location.  
Overall, Breezometer's API provides a comprehensive set of data related to air quality, weather, and health recommendations, which can be useful for a variety of applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:






