How to load data from Elasticsearch to Redis

Learn how to use Airbyte to synchronize your Elasticsearch data into Redis within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a Elasticsearch connector in Airbyte

Connect to Elasticsearch or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Redis for your extracted Elasticsearch data

Select Redis where you want to import data from your Elasticsearch source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the Elasticsearch to Redis in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that supports both incremental and full refreshes, for databases of any size.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Jean-Mathieu Saponaro
Data & Analytics Senior Eng Manager

"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"

Learn more
Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more
Alexis Weill
Data Lead

“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria.
The value of being able to scale and execute at a high level by maximizing resources is immense”

Learn more

How to Sync Elasticsearch to Redis Manually

Decide which data you want to move from Elasticsearch to Redis. This could be a specific index, type, or a query that selects particular documents.

Make sure you have a development environment ready with the necessary libraries for connecting to both Elasticsearch and Redis. You will need the Elasticsearch client and the Redis client for the programming language you choose.

For Python, you can install these with pip:

```bash

pip install elasticsearch

pip install redis

```

Create a script that connects to your Elasticsearch cluster and fetches the data you want to move.

```python

from elasticsearch import Elasticsearch

# Connect to Elasticsearch

es = Elasticsearch("http://localhost:9200")

# Define the query

query = {

    "query": {

        "match_all": {}

    }

}

# Fetch the data from the index you're interested in

response = es.search(index="your_index", body=query)

# Extract the hits

hits = response['hits']['hits']

```

Depending on your use case, you may need to transform the data before sending it to Redis. This could involve changing the data structure, filtering out unnecessary information, or aggregating data.

Now, create a script that connects to your Redis instance and inserts the data you retrieved from Elasticsearch.

```python

import redis

# Connect to Redis

r = redis.Redis(host='localhost', port=6379, db=0)

# Define a function to insert data into Redis

def insert_to_redis(data):

    for doc in data:

        # Use the document ID from Elasticsearch as the key in Redis

        key = f"esdoc:{doc['_id']}"

        # Assuming the document source is a flat dictionary, use HMSET to store it

        r.hmset(key, doc['_source'])

# Insert the data into Redis

insert_to_redis(hits)

```

Run the scripts you've written to perform the migration. Make sure to handle any exceptions or errors that may occur during the process.

After the migration, verify that the data in Redis is accurate and complete. You can write a validation script or manually check a subset of the data.

Monitor the Redis database for performance and memory usage. If you encounter any issues, troubleshoot by checking the logs and ensuring that your scripts handle edge cases and exceptions properly.

After the migration is successful and validated, you may want to clean up the data in Elasticsearch if it's no longer needed. Be cautious with this step to avoid data loss.

Additional Considerations

- Batch Processing: Depending on the amount of data, you may want to process and transfer it in batches to avoid memory issues.

- Concurrency: For large datasets, consider using multi-threading or asynchronous I/O to speed up the transfer.

- Idempotency: Ensure that your migration process is idempotent, meaning that running it multiple times won't cause duplicate entries in Redis.

- Logging: Implement logging in your scripts to keep track of the migration process and any issues that arise.

- Security: Ensure that the connection to both Elasticsearch and Redis is secure, especially if dealing with sensitive data.

How to Sync Elasticsearch to Redis Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

Elasticsearch is a distributed search and analytics engine for all types of data. Elasticsearch is the central component of the ELK Stack (Elasticsearch, Logstash, and Kibana).

Elasticsearch's API provides access to a wide range of data types, including:  
1. Textual data: Elasticsearch can index and search through large volumes of textual data, including documents, emails, and web pages.  
2. Numeric data: Elasticsearch can store and search through numeric data, including integers, floats, and dates.  
3. Geospatial data: Elasticsearch can store and search through geospatial data, including latitude and longitude coordinates.  
4. Structured data: Elasticsearch can store and search through structured data, including JSON, XML, and CSV files.  
5. Unstructured data: Elasticsearch can store and search through unstructured data, including images, videos, and audio files.
6. Log data: Elasticsearch can store and search through log data, including server logs, application logs, and system logs.  
7. Metrics data: Elasticsearch can store and search through metrics data, including performance metrics, network metrics, and system metrics.  
8. Machine learning data: Elasticsearch can store and search through machine learning data, including training data, model data, and prediction data.

Overall, Elasticsearch's API provides access to a wide range of data types, making it a powerful tool for data analysis and search.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up Elasticsearch to Redis as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from Elasticsearch to Redis and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter