

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, clone the GitHub repository to your local machine. This can be done by using the `git clone` command followed by the repository URL. This step ensures you have access to all the repository files locally.
```bash
git clone https://github.com/username/repository.git
```
Ensure the AWS Command Line Interface (CLI) is installed on your local machine. The AWS CLI is a unified tool to manage AWS services. After installation, configure it with your AWS access credentials by using the `aws configure` command. Provide your AWS Access Key ID, Secret Access Key, default region, and output format.
```bash
aws configure
```
Change your current working directory to the location of the cloned repository. This is necessary to access the files you wish to upload to S3.
```bash
cd repository
```
If you don't already have an S3 bucket, create one using the AWS CLI. Choose a unique bucket name and specify the AWS region. This bucket will be the destination for your data.
```bash
aws s3 mb s3://your-bucket-name --region your-region
```
Use the AWS CLI to upload files from your local repository to the S3 bucket. The `aws s3 cp` command can be used to copy files or entire directories.
```bash
aws s3 cp . s3://your-bucket-name/ --recursive
```
To confirm that your files have been successfully uploaded, list them using the AWS CLI. This step ensures that the files are in the intended location within the S3 bucket.
```bash
aws s3 ls s3://your-bucket-name/
```
If necessary, modify the permissions of the files in your S3 bucket. You can set these permissions using the AWS Management Console or the AWS CLI, depending on your requirements for accessing the data.
```bash
aws s3api put-object-acl --bucket your-bucket-name --key file-name --acl public-read
```
By following these steps, you can manually move data from a GitHub repository to an Amazon S3 bucket without the need for third-party services or connectors.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
GitHub is a renowned and respected development platform that provides code hosting services to developers for building software for both open source and private projects. It is a heavily trafficked platform where users can store and share code repositories and obtain support, advice, and help from known and unknown contributors. Three features in particular—pull request, fork, and merge—have made GitHub a powerful ally for developers and earned it a place as a (developers’) household name.
GitHub's API provides access to a wide range of data related to repositories, users, organizations, and more. Some of the categories of data that can be accessed through the API include:
- Repositories: Information about repositories, including their name, description, owner, collaborators, issues, pull requests, and more.
- Users: Information about users, including their username, email address, name, location, followers, following, organizations, and more.
- Organizations: Information about organizations, including their name, description, members, repositories, teams, and more.
- Commits: Information about commits, including their SHA, author, committer, message, date, and more.
- Issues: Information about issues, including their title, description, labels, assignees, comments, and more.
- Pull requests: Information about pull requests, including their title, description, status, reviewers, comments, and more.
- Events: Information about events, including their type, actor, repository, date, and more.
Overall, the GitHub API provides a wealth of data that can be used to build powerful applications and tools for developers, businesses, and individuals.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: