Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by thoroughly reviewing Gong's API documentation to understand the available endpoints and data export capabilities. Gong typically offers RESTful APIs that allow you to programmatically access your data. Identify the data you need to export and determine the specific API endpoints required for accessing this data.
Log in to your Google Cloud Platform account and create a new project if you haven"t already. Navigate to the Pub/Sub section of the Google Cloud Console and create a new Pub/Sub topic. This topic will be the destination for the data you are transferring from Gong.
Write a script in a programming language of your choice (e.g., Python, Node.js) to authenticate and interact with Gong's API. Use OAuth 2.0 or API keys as per Gong's authentication requirements. Implement API calls within your script to fetch the desired data from Gong and handle pagination if necessary.
Once you have extracted the data, transform it into a format suitable for Pub/Sub. Typically, this involves converting the data into JSON format. Ensure that the data structure matches the expected schema for the Pub/Sub messages you intend to publish.
Using the Google Cloud SDK or a client library, extend your script to publish the transformed data to your Pub/Sub topic. Initialize a Pub/Sub client, create a publisher instance, and use it to send messages to the specified topic. Include error handling to manage any issues during the publishing process.
Ensure secure interactions between your script and Google Cloud by setting up authentication. Use Google Cloud's service account mechanism, creating a service account with Pub/Sub Publisher roles, and download the corresponding JSON key file. Use this key file in your script to authenticate with Google Cloud.
To ensure continuous data flow, schedule your script to run at regular intervals using a task scheduler such as cron on Unix-based systems or Task Scheduler on Windows. Monitor the operations through Google Cloud Console to ensure successful data publishing and handle any errors or interruptions in data flow promptly.
By following these steps, you can effectively move data from Gong to Google Pub/Sub without relying on third-party connectors, ensuring a streamlined and secure data transfer process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Gong is a sales enablement platform that uses artificial intelligence to analyze sales calls and meetings, providing insights and recommendations to help sales teams improve their performance. The platform records and transcribes conversations, analyzes them for key topics and sentiment, and provides real-time coaching and feedback to sales reps. Gong also offers analytics and reporting tools to help sales managers track team performance and identify areas for improvement. The platform is designed to help sales teams close more deals, improve customer relationships, and increase revenue.
Gong's API provides access to a wide range of data related to sales conversations. The following are the categories of data that Gong's API gives access to:
1. Conversation data: This includes information about the participants, duration, and content of the conversation.
2. Call recordings: Gong's API allows users to access call recordings, which can be used for training and coaching purposes.
3. Transcripts: Gong's API provides access to transcripts of sales conversations, which can be used for analysis and insights.
4. Sales performance data: Gong's API provides data on sales performance, including metrics such as win rates, deal size, and sales cycle length.
5. Customer insights: Gong's API provides insights into customer behavior and preferences, which can be used to improve sales strategies and customer engagement.
6. Sales team performance data: Gong's API provides data on sales team performance, including metrics such as call volume, talk time, and response time.
7. Sales pipeline data: Gong's API provides data on the sales pipeline, including metrics such as pipeline velocity and conversion rates.
Overall, Gong's API provides a comprehensive set of data that can be used to improve sales performance and customer engagement.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





