

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”


“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
IBM DB2: Ensure you have IBM DB2 installed and running on your system. Obtain the necessary credentials to connect to the DB2 database.
Redis: Install Redis on your system or have access to a Redis server. Ensure it is running and you have the necessary credentials to connect to it.
Programming Environment: Set up a programming environment with a language that can connect to both DB2 and Redis. Python is a good choice for its simplicity and the availability of libraries for both databases.
Install Python: If not already installed, download and install Python from the official website.
Install DB2 and Redis Libraries: Install the necessary Python libraries to interact with DB2 and Redis. You can use ibm_db for DB2 and redis for Redis.
pip install ibm_db redis
Write a Script to Connect to DB2:
import ibm_db
# Replace the placeholders with your actual DB2 credentials
db2_conn_str = "DATABASE=your_db;HOSTNAME=your_host;PORT=your_port;PROTOCOL=TCPIP;UID=your_username;PWD=your_password;"
try:
db2_conn = ibm_db.connect(db2_conn_str, "", "")
print("Connected to DB2")
except:
print("Could not connect to DB2")
exit()
Query Data from DB2:
sql = "SELECT * FROM your_table" # Replace with your actual SQL query
stmt = ibm_db.exec_immediate(db2_conn, sql)
data = []
result = ibm_db.fetch_assoc(stmt)
while result:
data.append(result)
result = ibm_db.fetch_assoc(stmt)
# At this point, 'data' holds all the records fetched from DB2
Depending on the structure of your data in DB2 and how you want to store it in Redis, you may need to transform it. Redis typically works with key-value pairs, so you’ll need to decide on a key naming convention and data structure (e.g., strings, hashes, lists, sets, sorted sets).
# Example transformation for a simple key-value pair where 'id' is the key and 'value' is the value
redis_data = {str(row['id']): row['value'] for row in data}
Write a Script to Connect to Redis:
import redis
# Replace the placeholders with your actual Redis credentials
redis_conn = redis.Redis(host='your_host', port=your_port, db=0, password='your_password')
if redis_conn.ping():
print("Connected to Redis")
else:
print("Could not connect to Redis")
exit()
Insert Data into Redis:
# Using the example of a simple key-value pair
for key, value in redis_data.items():
redis_conn.set(key, value)
print("Data imported into Redis")
After importing the data, it’s important to verify that the data is correct and intact.
# Check a few keys to ensure they are stored correctly
for key in redis_data.keys():
if redis_conn.get(key) != redis_data[key]:
print(f"Data mismatch for key: {key}")
else:
print(f"Data verified for key: {key}")
Close DB2 Connection:
ibm_db.close(db2_conn)
Close Redis Connection (if necessary):
Redis connections are usually managed by the Redis client and do not require explicit closing.
If this data transfer is a recurring task, consider automating the process with a scheduler like cron (for Unix-like systems) or Task Scheduler (for Windows).
Remember to handle exceptions and edge cases in your scripts, such as connection failures, retries, and logging.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Specializing in the development and maintenance of Android, iOS, and Web applications, DB2’s AI technology offers fast insights, flexible data management, and secure data movement to businesses globally through its IBM Cloud Pak for Data platform. Companies rely on DB2’s AI-powered insights and secure platform and save money with its multimodal capability, which eliminates the need for unnecessary replication and migration of data. Additionally, DB2 is convenient and will run on any cloud vendor.
IBM Db2 provides access to a wide range of data types, including:
1. Relational data: This includes tables, views, and indexes that are organized in a relational database management system (RDBMS).
2. Non-relational data: This includes data that is not organized in a traditional RDBMS, such as NoSQL databases, JSON documents, and XML files.
3. Time-series data: This includes data that is collected over time and is typically used for analysis and forecasting, such as sensor data, financial data, and weather data.
4. Geospatial data: This includes data that is related to geographic locations, such as maps, satellite imagery, and GPS coordinates.
5. Graph data: This includes data that is organized in a graph structure, such as social networks, recommendation engines, and knowledge graphs.
6. Machine learning data: This includes data that is used to train machine learning models, such as labeled datasets, feature vectors, and model parameters.
Overall, IBM Db2's API provides access to a diverse range of data types, making it a powerful tool for data management and analysis.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Specializing in the development and maintenance of Android, iOS, and Web applications, DB2’s AI technology offers fast insights, flexible data management, and secure data movement to businesses globally through its IBM Cloud Pak for Data platform. Companies rely on DB2’s AI-powered insights and secure platform and save money with its multimodal capability, which eliminates the need for unnecessary replication and migration of data. Additionally, DB2 is convenient and will run on any cloud vendor.
Redis is an open-source, in-memory data structure store that can be used as a database, cache, and message broker. It supports a wide range of data structures such as strings, hashes, lists, sets, and sorted sets. Redis is known for its high performance, scalability, and flexibility. It can handle millions of requests per second and can be used in a variety of applications such as real-time analytics, messaging, and session management. Redis also provides advanced features such as pub/sub messaging, Lua scripting, and transactions. It is widely used by companies such as Twitter, GitHub, and StackOverflow.

1. First, you need to obtain the necessary credentials to connect to your IBM Db2 source. This includes the hostname, port number, database name, username, and password.
2. Once you have the credentials, open the Airbyte platform and navigate to the "Sources" tab.
3. Click on the "Add Source" button and select "IBM Db2" from the list of available sources.
4. In the "Configure IBM Db2" page, enter the hostname, port number, database name, username, and password in the corresponding fields.
5. Click on the "Test Connection" button to ensure that the credentials are correct and that Airbyte can connect to your IBM Db2 source.
6. If the connection is successful, click on the "Save" button to save the configuration.
7. You can now create a new pipeline and select the IBM Db2 source as the origin. Follow the prompts to configure the pipeline and select the destination where you want to replicate the data.
8. Once the pipeline is set up, you can run it manually or schedule it to run at specific intervals.
9. You can monitor the progress of the pipeline and view any errors or warnings in the Airbyte platform.
10. Congratulations, you have successfully connected your IBM Db2 source to Airbyte and can now replicate your data to any destination of your choice.

1. First, navigate to the Airbyte website and log in to your account.
2. Once you are logged in, click on the "Destinations" tab on the left-hand side of the screen.
3. Scroll down until you find the Redis destination connector and click on it.
4. You will be prompted to enter your Redis connection details, including the host, port, password, and database number.
5. Once you have entered your connection details, click on the "Test" button to ensure that your connection is working properly.
6. If the test is successful, click on the "Save" button to save your Redis destination connector settings.
7. You can now use the Redis destination connector to send data from Airbyte to your Redis database.
8. To set up a data integration pipeline, navigate to the "Sources" tab and select the source connector that you want to use.
9. Follow the prompts to enter your source connector settings and configure your data integration pipeline.
10. Once your pipeline is set up, you can run it to start sending data from your source to your Redis database using the Redis destination connector.

With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
IBM Db2 provides access to a wide range of data types, including:
1. Relational data: This includes tables, views, and indexes that are organized in a relational database management system (RDBMS).
2. Non-relational data: This includes data that is not organized in a traditional RDBMS, such as NoSQL databases, JSON documents, and XML files.
3. Time-series data: This includes data that is collected over time and is typically used for analysis and forecasting, such as sensor data, financial data, and weather data.
4. Geospatial data: This includes data that is related to geographic locations, such as maps, satellite imagery, and GPS coordinates.
5. Graph data: This includes data that is organized in a graph structure, such as social networks, recommendation engines, and knowledge graphs.
6. Machine learning data: This includes data that is used to train machine learning models, such as labeled datasets, feature vectors, and model parameters.
Overall, IBM Db2's API provides access to a diverse range of data types, making it a powerful tool for data management and analysis.