

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing Intercom's API to extract the required data. You need to have an API key or OAuth token to authenticate your requests. Visit Intercom’s API documentation to understand the available endpoints and data formats. Use these endpoints to fetch the necessary data, such as users, conversations, or contacts.
Utilize a programming language like Python, Node.js, or any other language of your choice to make HTTP requests to the Intercom API. Use libraries such as `requests` in Python or `axios` in Node.js to send GET requests to the desired endpoints. Capture the response data, typically returned in JSON format.
Depending on the structure of your data and the requirements of your MSSQL database, you may need to transform the data. Use your chosen programming language to parse the JSON data and reformat it as needed. This could involve data cleaning, type conversion, or restructuring to match the schema of your MSSQL database.
Ensure that your MSSQL database is ready to receive the data. This involves creating the necessary tables with the appropriate structure to match the incoming data. Use SQL commands to define tables and data types that align with your transformed data.
Set up a connection to your MSSQL database using a database driver or library appropriate for your programming language. For example, in Python, you could use `pyodbc` or `pymssql` to connect to MSSQL. Provide the necessary connection details such as server name, database name, username, and password.
With your MSSQL connection established, write a script to insert the data into your database. Use SQL INSERT commands to add the data into the appropriate tables. Loop through your transformed dataset and construct SQL queries to populate the tables in your MSSQL database.
After the data insertion process is complete, verify the data integrity by running SELECT queries on your MSSQL database. Check the newly populated tables to ensure that all data has been transferred accurately and completely. Cross-reference with the initial data extracted from Intercom to ensure no discrepancies.
By following these steps, you can efficiently transfer data from Intercom to an MSSQL database without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Intercom is a customer messaging platform that helps businesses communicate with their customers in a personalized and efficient way. It offers a suite of tools that enable businesses to engage with their customers through targeted messaging, live chat, and email campaigns. Intercom also provides customer data and analytics to help businesses understand their customers better and make informed decisions. The platform is designed to help businesses build strong relationships with their customers, increase customer satisfaction, and ultimately drive growth. Intercom is used by thousands of businesses worldwide, including Shopify, Atlassian, and New Relic.
Intercom's API provides access to a wide range of data related to customer communication and engagement. The following are the categories of data that can be accessed through Intercom's API:
1. Users: Information about individual users, including their name, email address, and user ID.
2. Conversations: Data related to customer conversations, including the conversation ID, message content, and conversation status.
3. Companies: Information about companies that use Intercom, including company name, ID, and size.
4. Tags: Data related to tags assigned to users and conversations, including tag name and ID.
5. Segments: Information about user segments, including segment name, ID, and criteria.
6. Events: Data related to user events, including event name, ID, and timestamp.
7. Custom attributes: Information about custom attributes assigned to users, including attribute name, value, and type.
8. Teammates: Data related to Intercom team members, including name, email address, and role.
Overall, Intercom's API provides a comprehensive set of data that can be used to analyze customer behavior, improve communication strategies, and enhance overall customer engagement.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: