Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Mailchimp account. Navigate to the "Audience" section and select the list you want to export. Use the "Export Audience" option to download your data. This will typically be in a CSV format, which is easy to handle and process for importing into Typesense.
Open the exported CSV file using a spreadsheet tool or a text editor. Ensure that the data is clean and formatted correctly. You may need to remove unnecessary columns or standardize the data fields to align with your Typesense schema requirements.
If you haven't already, set up a Typesense cluster. This involves installing Typesense on your server or using a cloud service. Follow the Typesense documentation to configure your server and create an API key, which will be required to authenticate your data import request.
In Typesense, data is organized in collections, each with a defined schema. Based on your Mailchimp data structure, define a schema for your Typesense collection. This schema should specify the fields (e.g., email, name, etc.) and their data types. Use the Typesense Admin Console or API to create the collection with the defined schema.
Since Typesense requires data in JSON format, convert your cleaned CSV data into a JSON structure. You can use scripting languages like Python or JavaScript to read the CSV file and output JSON objects. Ensure that each JSON object corresponds to an entry in your Typesense collection schema.
With your JSON data ready, use the Typesense API to import this data into your collection. You can write a script using a programming language that can make HTTP requests (such as Python with the 'requests' library) to send POST requests with the JSON data to the Typesense server. Ensure that you handle any API rate limits or errors during the import process.
Once the data import is complete, verify that the data has been correctly imported into Typesense. Use the Typesense search API to query the data and check that all entries are present and correctly formatted. This step ensures that the data migration process has been successful and that the data is ready to be used in your applications.
By following this guide, you can successfully move your data from Mailchimp to Typesense without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Mailchimp is a global marketing automation platform aimed at small to medium-sized businesses. Mailchimp provides essential marketing tools for growing a successful business, enabling businesses to automate messages and send marketing emails, create targeted business campaigns, expedite analytics and reporting, and effectively and efficiently sell online.
Mailchimp's API provides access to a wide range of data related to email marketing campaigns. The following are the categories of data that can be accessed through Mailchimp's API:
1. Lists: Information about the email lists, including the number of subscribers, the date of creation, and the list name.
2. Campaigns: Data related to email campaigns, including the campaign name, the number of recipients, the open rate, click-through rate, and bounce rate.
3. Subscribers: Information about the subscribers, including their email address, name, location, and subscription status.
4. Reports: Detailed reports on the performance of email campaigns, including open rates, click-through rates, and bounce rates.
5. Templates: Access to email templates that can be used to create new campaigns.
6. Automation: Data related to automated email campaigns, including the number of subscribers, the date of creation, and the automation name.
7. Tags: Information about tags that can be used to categorize subscribers and campaigns.
Overall, Mailchimp's API provides a comprehensive set of data that can be used to analyze and optimize email marketing campaigns.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





