Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Familiarize yourself with MailerSend’s API documentation to understand how to authenticate and retrieve the data you need. This includes learning about API endpoints, request methods, and necessary parameters.
Obtain the necessary API keys or tokens from your MailerSend account. Implement a secure method to store and access these credentials in your environment, ensuring you can authenticate API requests without exposing sensitive information.
Write a script in a programming language like Python, Java, or Node.js to call the MailerSend API. This script should handle authentication, send requests to the appropriate endpoints, and process the JSON response to extract the desired data.
Ensure your Oracle database is set up and accessible. Create the necessary tables and define the schema to accommodate the data structure you plan to import from MailerSend. Ensure the database can accept connections from your script's execution environment.
Implement logic within your script to transform the MailerSend data into a format suitable for your Oracle database schema. This may include data type conversions, field mappings, and any necessary data cleansing operations.
Extend your script to include functionality for connecting to your Oracle database and executing SQL insert statements. Use a library or native database driver available for your programming language to manage the database connection and execute queries.
Thoroughly test your script to ensure data is accurately retrieved, transformed, and inserted into the Oracle database. Validate the data in the database to confirm successful transfers. Once verified, schedule this script to run at regular intervals using a cron job or a similar scheduling tool to automate data transfers.
This guide outlines the manual process of moving data from MailerSend to an Oracle database, ensuring you handle each step without relying on external connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
MailerSend is a cloud-based email delivery platform that helps businesses send transactional and marketing emails to their customers. It offers a user-friendly interface, advanced email automation, and real-time analytics to help businesses optimize their email campaigns. With MailerSend, businesses can create and send personalized emails, track email delivery and engagement, and manage their email lists. The platform also provides robust security features to protect sensitive data and prevent spam. MailerSend is designed to help businesses improve their email deliverability and increase customer engagement, ultimately driving revenue growth.
MailerSend's API provides access to a wide range of data related to email campaigns and delivery. The following are the categories of data that can be accessed through MailerSend's API:
1. Account data: This includes information about the account, such as the account ID, name, and email address.
2. Campaign data: This includes information about the email campaigns, such as the campaign ID, name, subject line, and content.
3. Recipient data: This includes information about the recipients of the email campaigns, such as the recipient ID, email address, and status (e.g., delivered, bounced, opened, clicked).
4. Delivery data: This includes information about the delivery of the email campaigns, such as the delivery status, delivery time, and delivery method (e.g., SMTP, API).
5. Analytics data: This includes information about the performance of the email campaigns, such as the open rate, click-through rate, bounce rate, and conversion rate.
6. Configuration data: This includes information about the configuration of the email campaigns, such as the sender name, sender email address, and reply-to email address.
Overall, MailerSend's API provides comprehensive access to data related to email campaigns and delivery, allowing users to analyze and optimize their email marketing strategies.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





