

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Familiarize yourself with Mixpanel's data export capabilities, which primarily involve using their API. Mixpanel provides REST API endpoints that allow you to export data in JSON format. Review the Mixpanel API documentation to understand the parameters you can use for exporting different types of data.
Obtain the necessary API credentials from your Mixpanel account. You will need the API secret or a service account token for authentication. Ensure that your account has the necessary permissions to access the data you wish to export.
Create a Python script (or use another programming language of your choice) to fetch data from Mixpanel using their API. Use libraries like `requests` in Python to handle HTTP requests. Structure your API calls to retrieve the desired events or data points, and handle pagination if your dataset is large.
Once the data is fetched in JSON format, transform it into a structure compatible with MSSQL. This may involve cleaning up the JSON data, flattening nested structures, and converting data types to match MSSQL. You can use libraries like `pandas` in Python to manipulate the data efficiently.
Ensure your MSSQL database is ready to receive data. This includes creating the necessary tables with appropriate column names and data types that match the transformed data. Use SQL Server Management Studio (SSMS) or another tool to set up your database schema.
Use a database connector library such as `pyodbc` or `pymssql` in Python to establish a connection to your MSSQL database. Insert the transformed data into the appropriate tables using SQL `INSERT` statements. Make sure to handle any potential errors or conflicts, such as duplicate entries or data type mismatches.
Once the script is working correctly, automate the process by scheduling the script to run at regular intervals using a task scheduler (e.g., cron jobs on a Unix system or Task Scheduler on Windows). This ensures your MSSQL database remains updated with the latest data from Mixpanel without manual intervention.
By following these steps, you can efficiently transfer data from Mixpanel to an MSSQL destination without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Mixpanel helps companies leverage metrics to make better decisions, faster. An analytic platform, Mixpanel enables companies to measure meaningful attributes and use the data to create better products/experiences. Mixpanel’s analytics solution enables teams to improve the website visitor experience by providing analytical data—in real time and across devices—on how (and why) visitors engage, convert, and retain.
Mixpanel's API provides access to a wide range of data related to user behavior and engagement on digital platforms. The following are the categories of data that can be accessed through Mixpanel's API:
1. User data: This includes information about individual users such as their unique identifier, location, device type, and other demographic information.
2. Event data: This includes data related to specific actions taken by users on the platform, such as clicks, page views, and other interactions.
3. Funnel data: This includes data related to the steps users take to complete a specific action or goal on the platform, such as signing up for a service or making a purchase.
4. Retention data: This includes data related to how often users return to the platform and engage with it over time.
5. Revenue data: This includes data related to the financial performance of the platform, such as revenue generated from sales or advertising.
6. Custom data: This includes any additional data that has been collected and stored by the platform, such as user preferences or product usage data.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: